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1 Lorentz-Transformations

1.1 Postulates of Special Relativity

Einstein came up with two postulates in 1905:

P1:  Principle of relativity between inertial coordinate systems
(just as for Galileo transformations)

P2:  Constancy of the speed of light in vacuum, irrespective of
the motion of the source or detector

Specifically, P1 and P2 follow from the statement:
The laws of nature are invariant under Lorentz-
transformations.

1.2 Lorentz-Transformations
Lorentz-transformations act between two space-time cartesian
coordinate systems:
X' =A%xF +a% @=1,23,0,
where A“ﬁ and a® are constants (they become space-time
dependent in general relativity, which makes the Lorentz-
transformations non-linear) and the A"‘ﬁ obey
A% AN g = ys = diag(1,1,1,—1).

PROPER TIME:
With this property, the proper time

dr? = dt? — (dx)? — (dx?)? — (dx®)? = —n,pdx“dxF
is Lorentz-invariant, since

dt'? = —ngpdx'*dx'f = —naﬁA“yAﬁ5 dx¥dx® = dr?.
=Nys
MICHELSON-MORLEY EXPERIMENT:
This explains the Michelson-Morley experiment 1878. They
measured
la=el 5 g0
e+ cu
The earth’s relative velocity is vg /c ~ 10~* and from thus it
follows that one would theoretically (classically) expect
ley = co|/|ey + cu| = (v®/c)2 ~ 1078 >» 3 - 107*° However,
from dt? = dt'? follows actually |c, — ¢, |/|¢; + ¢, | = 0. That s,
because if the light wave in one system propagates with
\/(dxl)z + (dx?)? + (dx3)? |dX
=|—|=1(c)
dt dt
s 0=dt? - (dx')? — (dx?)? — (dx?)? = d1?
=dt"? =dt'? — (dx'1)? — (dx'?)? — (dx'3)?

J@x'? + (dx'2)? + (dx'3)2  |d¥’ dx
1= dt’ ~ar'| ~ [at|
TRANSFORMATION MATRIX:
For ¥ = vé, one might guess
y 0 0 yv y(x; + vt)
(310 ) o
yv. 0 0 vy y(t + vxy)

since this yields Galilei transformation for y — 1. So it should be
y = 1 for v = 0. Confirm, that

A naphfs =nys & ATpA=n.
For that to be the case, ithastobe y = 1/vV1 — v2.

1.3 Lorentz Groups
All the transformations

x'* = “ﬁxﬁ +a“
form the Poincaré group. The subgroup with a® = 0 forms the
homogenous Lorentz group. The sub-subgroup with A% > 1 and
det A = 1 is called proper Lorentz group, which is a Lie group
and hence can be constructed with generators. Three generators
for rotations (Euler angles) and three for boosts (components of
D).
The improper Lorentz group (where A% < 1 or detA # 1)
essentially consist of space and time reflections.

1.4 Lorentz Tensors
Lorentz tensors are quantities, which transform homogenously
under Lorentz transformations:
scalars: s'(x") =s(x),
contravar. 4-vectors: V'%(x") = A“BVB (x),
covar. 4-vectors: Wy (x") = Af Wp(x),
where A = n,, A" 1%
New Lorentz tensors can be built from old ones (R, S) by
linear combination: T% = aR%; + bS%

direct product: TS = RSy
contraction: T = R%,
Tensor transform like
T’a1f12---an
B1B2--Bm
— A% AQ2 | AQ Via V2 ., V. Hipz .-l
=A #1A Uz’ A Zn Aﬁl Aﬁz Aﬁnn T nV1Vz---Vm'

The components of the Minkowski-Tensor, the Levi-Civita-
Symbol and the zero tensor (all components zero) are
independent from the inertial frame.




2 Particle Dynamics

2.1 4-Momentum
RELATIVISTIC EQUATION OF MOTION:
Suppose in the rest frame the force F is known and Newtonian
dynamics F= ﬁ holds. Then, a relativistic equation for a particle
with rest mass m and coordinates x*(7) could be

dp®  d*x*

o =M N
m and 7 are scalars, x¢ is a Lorentz vector. Thus, if f* is also a
Lorentz vector, this holds in any frame. In the rest frame, where
dt = dr, itis

ﬁ‘gst = (ﬁ' 0)'
in an arbitrary frame it is
£ = 0% @) fh = (F+ (r = 0 9(0F), v(5F)),
as follows from the Lorentz transformation for an arbitrary 7.
COMPONENTS OF THE 4-MOMENTUM:
Using (as known from 1.2)
dr = dt? — dx? =dtvV1 —v = dt/y,

which is just time dilation, to get the components of 4-

momentum:
it = mdx“ (ym da?/dt) (ymv) (ﬁ)
dt ymdt/dt ym E/
Since
m m
E=———=~mc? +?v2 + -

J1—v2%/c?
E is obviously the energy.
CONSERVATION OF 4-MOMENTUM:
If non-relativistically the energy and momentum are conserved,
then the 4-momentum is also conserved

qu‘—zpf‘=0.
i i

for incoming particles g{* and outgoing ones pf*.
ENERGY-MOMENTUM-RELATION:
The equation

E? =p% + m?
holds, since (using dt? = —naﬁdx“dxﬁ)
dx®dxF dr?
22 — — — 2 — 2
P? = B = nagppF = mPnep——5—=—-m’ 5 =-m?.

2.2 Electro-Magnetism

4-CURRENT:

Charged particles (charges e,,, positions ¥, (t)) generate the 4-
current

1) = (J@,p(0)) = ) ead(® = 2a())

n
This doesn’t look like a 4-vector, however it actually is, since

dxn

a a(t )
rw =3 fan e nw) %
dxn (Tn)

fdrn ené'(x xn('rn))

where the renamlng t' - 1, was allowed since it’s only an
integration variable. In this form, it is obvious, that J* is a 4-
vector. Using this current, charge conservation d,p = —Vj can be
written in the Lorentz invariant form
a,]%(x) = 0.
MAXWELL-EQUATIONS:
In relativistic notation, the Maxwell equations read
0,F%F = —JB, e®Pr89sF,5 = 0,
where F% is the anti-symmetric field strength tensor.
Classically, the electric and magnetic fields are used instead of
F%, but this is just a matter of notation/interpretation:
FU = €;;By, F% =E;.
The electro-magnetic force on a particle with charge e is in
terms of F%8
dxh

fim = eF% T

In the particle’s rest frame that yields

t=eFl) = —eF® = eF;
@ = eF4sF = eF% = f 0 L
fEM BY o 0 {fozeF()O:_eFQQ:O

2.3 Energy-Momentum Tensor

The energy-momentum is defined quite analogous as the 4-
current:

T (x) = Z pe

Whereas the 4- current describes densities and currents of
charges, the energy-momentum tensor describes densities and
currents of energy-momentum p%, a 4-vector, and hence has a
second index a. Just as for the 4-current one can proof that 7¢#
is indeed a tensor and with p® = m 8,x% it follows that 7% is
symmetric. Using f* = d,p“ yields

d d
SFTPE) = ) () 6(F — (),

7 = ke,

oxB

For either free particles or particles with localized interactions

(like hard collision) there are conservation laws:

4]
—TaB —
axﬁT 0.

Not so, if there are long-range interactions. To rescue energy-
momentum conservation, one introduces force fields so that the
total energy-momentum tensor is conserved:

9 _ap

O (rap ap
a.x_ﬁj;ot = m (j;articles + g}ields)’
where T}, icles 1S the T as defined above. For example, the long-
range electro-magnetic force yields

1
%T/Eﬁelds = Fay’lysFﬁS - Zn“BFVSF“S,

which has the components

1 - —,
720 = 5 (E? + B?) (densitiy of field energy),

= (E X §)l (Poynting-Vector).




3 Principles of General Relativity

3.1 Einstein Principle of Equivalence (EEP)

THE EEP:

Einstein postulated the following EEP:
In an arbitrary gravitational field, it is possible to choose a
locally inertial coordinate system (LICS), so that in a
sufficient small region of space-time the laws of nature take
the same form as in the absence of gravity (i. e. special
relativity holds in the LICS).

EQUALITY OF INERTIAL AND GRAVITATIONAL MASS:

Consider a non-relativistic particle ¥, and N other such particles

%, with a known Force F (X, — %,) (i. e. electrostatic) within a

static, homogeneous gravitational field § = const. The equation
of motion for the particle X, then reads

dzﬂ
m;——- ae —mgg+ZF(xp n,

where it was distinguished between the inertial and
gravitational mass. After a transformation ¥’ = ¥ + gt/2,t' = t,
this equation looks as follows:
23, o
mi—2 = ) B3 = 3) + (my — m)g.
n=1
Obviously, if m; = m; the observer in 0’ sees the same physics
as the one in O just without gravitational field! That’s just what
the EEP states.
PARTICLE IN AN EXTERNAL GRAVITATIONAL FIELD:
Now, the equation of motion of a particle in an external
gravitational field is derived. In the freely falling LICS, the
equation of motion is given by, according to the EEP,
d*¢%/dt?> =0

with the proper time

dt? = —ngpdS®dsP,
justasin 1.2.In arbitrary coordinates x* this yields
d . 0&% ox# &Y 0%xH 9%¢* dx" ax*
T dt?  dr (axl‘ 0‘[) dxH 912 dxHox¥ At OT
Contracting this equation with dx*/3¢&¢ yields

028 9%x*  9x* 0%&* oxY oxH 3 0%x* . dxtdx?
=% ez T gz axraxy gt ot | orr | W dr dt’
where the “affine connection” (which is no tensor!) is given as
r, = 0x" _0%* :
W 9&a gxkoxv
The proper time in terms of the new coordinates is given as
d 2 afu aEB u vV — I’ v
T4 = _”“ﬁﬁaxv dxtdx¥ = —g,,dx"dx",
where g,,, is the metric tensor, which is defined as
65“ &k

Guv = G g 14
For F’lm, = 0, the particle does not feel a gravitational force.
THE AFFINE CONNECTION IN TERMS OF THE METRIC:
Take the derivative of the equation for the metric above:

0 _ 0% o o5t 0
ax2 I = Gx2oxt axv 198 T Gxk gxroxy 1%F
¢ ogt PYZR Y

K

=T Au axK dxV Svlap t FKMLgKV + Fxlvg;uc-
Adding/subtracting the same formula with interchanged indices

u < Aandv < Adyields
d d d
mguv JxH S 9w — dxV S5 9u1

Gt e 8 =

== ZFKuAgVK'
Define the inverse metric as g*” such that g*¥g,,, = 6;,‘. The
contraction of the equation with gV? yields

a a d
Flu 29 (ax,lg/w 0x #glv_ﬁgu/l)-

3.2 Newtonian Limit
Consider a non-relativistic particle, that is to say

dx dt
d‘r d
we is supposed to obey the Newtonian equation of motion
d*x GM
2=V b=

where the mass M is considered to be small.
For a non-relativistic particle in a week and static gravitational
field the relativistic equation of motion of 3.1 reads
a2x" dxtdx¥ 9% o rdey?
P ()

r
at? T dr dr | 012 +
n 1 nv
oo 29 V(30Gov + 90Gvo — OvGoo) = =59 9y 9oo»
where the time derivatives vanish since the field was assumed to
be static. Since the field is also assumed to be small, the metric
deviates only a little from the Minkowski metric:

I = M + Ay, |huv| <1 = g*
Thus, the spatial components of the equations of motion become

o%xt 1 rdty? 1 /dey?
a2 2" (d‘[) thoo=§(a) Viftoo,

the time component on the other hand
0%t 1 rdt
a2 2" (d‘r) % Goo =0,
since the field is static and thus dy gy, = 0. Thus, take the
constant dt/dt to be 1, which yields
%% 1
ﬁ =~ EVhOO'
Thus, for hyy = —2¢y (thus goo = —1 — 2¢py) the Newtonian
equation is recovered.

0=

where

= kv — v,

3.3 Gravitational Redshift

Consider two identical clocks that send out light at the same
frequency v = 1/At. If they are at rest (dx' = 0), the space-time
interval between two ticks As equals the time-interval:

As = /—gwdxl‘dxv =/ —goo(x;)dt; = At

S —=Goo(x1)dty =/ —goo(xz)dt,

Ya _ & _V —Zoo(x2)
Vi dt Y —Zoo(x1)

Calling v, = vand v, = v + Av and using goo = —1 — 2¢, which
was the result of 3.2 for week fields, yields

Joo(x2) 14 2¢(xy)
goo(x1 1+ 2¢(x1)
~ (1 + ¢(x2))(1 - ¢(x1)) —1=¢(x;) —p(x) + 0(¢ )
=~ Ag.

AV Vz - 1

v 2]




4 Tensors and Curvatures

4.1 Tensors and the EEP
The EEP can be rephrased as follows:
A physical equation holds in a general gravitational field, if
1. the equation is generally covariant (meaning the form is
preserved under a general coordinate transformation) and
2. the equation holds in the absence of gravity (meaning for
Iuv = Nyvs F’lw = 0 special relativity holds locally).
Such physical equations can be built out of tensors, which
transform homogeneously under general coordinate
transformations:
dx'#1
T

dx'*n dx*1  dx¥n
dx™ dxi

’ﬂl ‘Un l)
V1 Ym -

711 Un( )

dx’VN K1 ‘Km
4.2 Transformation of the Metric and the Connection
THE METRIC:

The metric does transform like a tensor under a transformation
x = x' (see definition from 3.1):

B de* dgf 0x" 0x* dE* dgF axm ax*
v = Map dx'Bdx 1B xri g dact dxck . I Gk gxv
THE AFFINE CONNECTION:

The affine connection does not transform like a tensor! Instead,
the transformed affine connection reads
L ax'* dx° ax® p ax'"*  92xP
0xP 0x'Hox'V"

B 9xP dx'k dx'v Por+

4.3 The Covariant Derivative

Consider a vector V*. Under arbitrary coordinate
transformation,

0
oV, = OxV V=V
is not a tensor:

o
V= 6x’“v27

d v 0 6x‘TV 0x° 0 V+<6 ax")
—1 = =

ax’™v F o ax™oax® 7 oOx'Hoax™v °  \ogx'vox'*)°
0x° 0x* 0 0%x°

T 9x'Hx" 9x* Vo + dx'Hox'v Vo-
This structure is very similar as for the affine connection. Thus,

— A uo_ ks 13 A
Vp.;v = Vu,v =T qu)u |4 v |4 WV +T AvV |
are tensors, since
V V’ F’A v dx% 0x*
wyv — uy 1= ax’” dx'v T

The covariant derivative of an rank-2 tensor then reads
b _pn I K
Tv;A_Tv,/1+F/1xT -T /1T
where T“W1 := 0,T",. The covariant derivative acts as a linear
operator, just as the ordinary derivative.

4.4 Electro-Magnetism in Curved Space-Time
GENERAL RECIPE:

1. Find the appropriate special relativity equations, holding

in the absence of gravity.

2. Replace n,, = g,, and ordinary by covariant derivatives.
Then, the resulting equations also hold in the presence of a
gravitational field.

COVARIANT MAXWELL EQUATIONS:

The covariant Maxwell equations read (compare with 2.2):
== Fuva + Fapy + Fogp = 0.

The force 4-vector stays the same:

= Rt dx"
drt

4.5 The Riemann Tensor and the Ricci Tensor

RIEMANN TENSOR:

The first (covariant) derivative of the metric, g, ist of course

a tensor, but one can show easily with the definition of the affine

connection (which sits inside the covariant derivative) that

Juvia = 0.

It has been shown that the only tensor linear in the second order

derivative of the metric is the Riemann tensor:
RYup =Ty =Ty + 19T, —T7,

p)
upl "vas
which also can be written as

upv

~I9uv,rp — YGapuv + gup,/l,v)
+ 9o (T %p = T30 %)-
Note, that the usual convention has an opposite overall sign!

It has 4* = 256 components, but due to symmetries, only 20 are
independent:

1
Rapvp = 2 (glv.u.p

Rlu vp = Rvp Au
R/l,uvp = _Rullvp = _Rlu pv

Ry pvp + Rapuw + Ravpp =0 (first/algebraic B.1.)

Riuvpie + Rapovip + Ry popy = 0 (second/differential B.1.)
Here, B.1. is short-hand for Bianchi identity. One may check all
this in the LICS, where I' = 0.
RICCI TENSOR AND RICCI SCALAR:
The Ricci tensor is defined as

Ryp = lelp'
the Ricci scalar as
R = g"'R,, = R,
The Ricci tensor is symmetric:
Rup = Rlulp = 9™ Riuap = 9" Rapru = Rpreu = Rope

Also, other contractions of the Riemann tensor can be given as
the Ricci tensor, e.g.

A _ -
R pua = 9 Rupuz = 9% Runwp = =9™ Raywp = —R¥yyp = —Ryp.
Finally, it holds that
1
_Eluvaluvp =0, g =- detgw.

Ja
THE CONTRACTED BIANCHI IDENTITY:
Using g”,a = 0 from the very top of 4.5, it follows that

(QMRMWP);U = RY\vp,s = Ryp,s  and

A — Ak — Ak
gﬂpR upa;A — gupg R;cupa/l - _gupg R/ucpo/l

vA —
g Rluvp 0

=—9™R’ )57 = =9 Reoia = —R’s;
Thus, the following form of the second Bianchi identity yields
Rawvpic = Rawve;p + Rappoy =0 |g v
©  Rupo = Rugp + RV ypsy =0 lgh* -
= Ry — Rpc;p - Rla;l =R, — ZRHO';[,L =
o Ry, —284R, = (R, - ;&;R)m =0 lg" -

1
o [ —Lomr) =0
2 H

4.6 Covariant Derivative along a Curve
The covariant derivative of a vector s, (7) along a curve x#(7) is

Ds, _ ds, N dx”
—i=—-T ;w_sllr
Dt dt dt

since Ds, /Dt behaves like a tensor under coordinate
transformation, as can be shown straight forwardly by plugging
in the transformation properties of s, and F”lm,. In the absence
of other forces, for the LICS (I' = ds/dt = 0) holds that

and since Ds, /d is invariant this also holds in any other frame.




4.7 Parallel Transport
Say that any vector s, is parallel transported if it obeys
Ds, ds dx"
u j yl
Dt dt W gr S
Define the change of the vector s, after being parallel
transported around a closed loop C (parametrized as x#(7)) as
AS# ©) = Su (Tend) —Su (Tstart)-
Consider an arbitrary area A bounding C and break it up into
N > 1 “tiles” § A,, with borders §C,. Thus it follows

N
85,(0) = ) 85, (Cy).
n=1

Now, s,,(C;,) needs to be evaluated. Starting from some point

P = x*(Tga) at some other point x#(7) the vector s, reads
v

T , dx
su(t) =s,(P) + f dt T w?sa,
Tstart
which is derived from the condition Ds, /Dt = 0. Since the curve

C,, is small, the integrand can be Taylor expanded about P:
Flyv(‘[) ~ Flyv(P) + apr;{yv(P)(xp(T) - xp(P))’
$1(1) = 5,(P) + %, (P)s,(P)(x* (1) — x°(P)).

This yields up to terms of first order in x¥(t) — x¥(P)

5, (T)
T
= 5,(P) + T, (P)s;(P) f drt

Tstart

dxV
dr

+ (M (PIT %, (P) + 3,1, (P)) 5, (P)

f o (e () — 20 (P))

Tstart dr

By definition it is As, (Cr) = 5, (teng) — 5 (P). For T = 74,4 the

integrals become closed loop integrals for which ¢ dx" is always
zero. Obviously, this holds for § x(P) dx¥ ~ ¢ dx". Thus,
85, = (T2 (PIT %, (P) + 0,7%, (P) ) 55 (P) b dx"x”.
n
v and p, being dummy indices, can be interchanged. Using

0= éd(x"xp) = f(dx"xp + dxPxV)
= § dx¥xP = — f dxPx?
yields

As, = %(Asu + As,(p & v))

— 1 FA o 9.T? F/l 4 9.T° dxVxP
_E( wl2p + 0p1 0 = 1515, — 0y up)sa|P A x°x
n
and thus, using the definition of the Riemann tensor from 4.5,

1
Asu(cn) = ERU/Wp(P)SU(P)

dxVxP.
Cn
Evidently, s, changes if and only if R?,,,(P) # 0. Thus, the
Riemann tensor indicates the presence of a genuine gravitational
field instead of mere exotic coordinates (instead of the metric,
which can also for a plane manifold look ugly in strange
coordinates).
It can be proofed that for the metric g,,, to be equivalent to the

constant Minkowski metric globally (meaning there are
coordinates such that g,,, = 7, globally), the conditions are

1. R*,,[g(x)] = 0 vx
2. at some point x the matrix g,,, (x) has three positive and
one negative eigenvalues.

4.8 Tensor Densities

DEFINITION:

A tensor density is an object which transforms almost like a
tensor, specifically

dx'"M oax"  dx
axv] ax ax
where the -+ stand for all the indices. The determinant is the
Jacobian determinant and w is called the weight of the tensor

T

density.
METRIX DETERMINANT:
The determinant of the metric g = — det g, is a scalar density
of weight w = —2, since (using det AT = det A)
, ax* dxP 5 dxt _,0x'*
g =—detax—mgapm= ax,ugz et Wg.

LEVI-CIVITA SYMBOL:
The Levi-Civita symbol is a tensor density with weight w = —1.
A tensor is a tensor density with w = 0. It holds

Auvp —
€ - Rl;wp 1/\/ g 9: .
w=-1 w=0 w=1 w=0

DELTA-FUNCTION:
/g d*x is a scalar volume element and thus §*(x)/,/g is a scalar
density because

1
[ax s 50010 = O

4.9 Energy-Momentum Tensor in General Relativity
For the Special Relativity case, the energy-momentum tensor
was given in 2.3 and it obeys
g —
™|, =0
Following the recipe in 4.4, there should be a tensor T#" with
woo
X T, =0,
which reduces to T#¥ in a LICS. Similar to 2.3, the tensor reads
dx

TH (x) = my dxn o(x Xn)-
d[
Vg n




5 Gravitational Field Equations

5.1 Derivation of the Einstein Equations
ANSATZ:
The electro-magnetic fields do not carry charges themselves
which makes the Maxwell equations linear. However,
gravitational fields do carry energy-momentum themselves and
thus the differential equations are by necessity non-linear.
The Einstein Equations can be searched for being guided by the
following principles: the EEP and the Newtonian limit.
In 3.2 it was found that gy = —1 — 2¢. Also, Ty, corresponds to
the energy density. Thus, the Poisson equation V2¢ = 476Gy Ppmass
may be rewritten as
V2goo = —8mGyToo-
This leads oneself to the Ansatz
Gy = —8nGyTy,,

where G,y must be a tensor, which

1. involves a second order derivative of the metric linearly,

2. is symmetric (since T}, is symmetric),

3. is conserved, i.e. G, = 0 (since T, is conserved) and

4. obeys Gyy = V2 g, for weak static fields.
CONSTRUCTING G ,:
The only tensor available is the Riemann tensor and since G,
has only two indices, it has to be built out of Ry, and R:

Gy = 1Ry + 29 R.
This already fulfills condition 2. The 3. condition requires
G*, = (.R* + c,9"'R),, = 0.

Comparing this to the contracted Bianchi identity in 4.5 yields
that G*¥ must be of the form

o — c{o—Lgne),

CALCULATE THE FACTOR c:
¢ follows out of the 4. condition. Consider a non-relativistic
system, for which |Tl-]-| &K |Too| (low velocities). In this case,

1
Gij = _87TGNTl'j ~0 (=1 RU = EQUR
Weak fields (see condition 4) implies g,, ~ 1,, and therefore
1 3
R =g""Ry, = ¥ Ry = Roo = 5 XiMi R — Roo = SR — Roo

— R = 2R00,
recalling the convention n = diag(—1, 1,1, 1). Thus,

1
Goo = ¢ (Roo - ;gooR) ~ 2¢Rgo = 2¢(X; Rivio — Roooo)-
For a weak static field in a LICS, itis I = 0 and therefore,

R ~1 azg)m _ azguv _ azgﬂp azgup
Mve = o\ xkaxP  dxAoxP dxHdIx¥ ' dxAdxV
1 0%gq0
= Roooo =0, Ryjo= 7 axiox

The latter follows directly from the static field, which makes all
time derivatives vanish. Plugging those results in yields

1 0%goo
Goo = ZCZE axiox] V2 goo-
l
Comparing this to condition 4 directly yields ¢ = 1.

THE EINSTEIN EQUATIONS:
Thus, the Einstein Field Equations (1915) read

1
Ry, — ng,R = —8nGyTw,

where

1
Guv = Ruv - EguvR

is called the Einstein tensor.

5.2 Remarks to the Einstein Equations

CURVATURE IN VACUUM;:

Consider a universe, where some areas are not filled with
matter, but are in vacuum. In those areas holds Tnw=0 and thus

1
Ruv _Eg;wR =0 Lguv '

1
= R—ER=O & R=0 = R, =0

Where R = 0 = R, = 0 follows from the Einstein equations for

Ty

0 = Ry, = 0, i.e. space is never curved in vacuum areas.

v = 0.In one or two spatial dimensions it also holds R, =

However, for three spatial dimensions this is not true and Rw,lp
can be non-zero also in vacuum areas.
RICCI SCALAR AND ENERGY-MOMENTUM TENSOR:
Contracting the Einstein equation with g#V yields

R —2R = —81TGNT”# & R= 8nGNT”H.
Thus, the Einstein equations may be given as

R,, = —8nGy (T,W - % g,ﬂﬁ).
COSMOLOGICAL CONSTANT:
Adding a term —Ag,,, to G, where A is a constant, yields
R, — %gMR —Agyy = —8nGyTy,,.

Actually, this contradicts condition 4 in 5.1, however, A might be
small enough so that its impact on the Newtonian limit is
negligible. In 1999 it was discovered that A ~ 10752 m™2.

5.3 Classical Tests of General Relativity *
DEFLECTION OF THE LIGHT BY THE SUN: @ L L
Atasolar eclipse in 1919, the apparent ¢ =" 7.
angle between two stars ¢ was " S

measured, where the light of one of the stars passed the sunin a
short distance (the solar eclipse was necessary to shield the
sunlight and be able to see the starlight). Half a year later, the
sun moved towards the other side of the earth and the angle was
measured again (without needing the moon). General Relativity
predicts that those measured angles differ by
4GyMg
O]
Assigning a mass m = E /c? to the photons and applying
Newton's theory only gives half of this value. Two independent
groups conducted this experiment in 1919 and came out with
Ap = (1,98 £ 0,12) arcsec and A@ = (1,61 £ 0,31) arcsec.
Later experiments of those type confirmed General Relativity to
a higher precision.
ADVANCE OF THE PERIHELION OF MERCURY:
As known in astronomy for a long time and in contradiction to
Newton's theory, the perihelion of mercury precesses around
the sun by an angular velocity of

w = (43,11 + 0,45)

~ 1,75 arcsec = 4,86 - 10~ degrees.

arcsec

century’

General Relativity yields the theoretical value of
6mGyMe arcsec

T (1-¢¥a century’

where ¢ is the excentricity and a the aphelion distance.

w




5.4 Gauge Fixing
ELECTRO-DYNAMICS:
The Maxwell equations for a vector potential 4, read
04, — 0,084F = —J,.
Those are four equations for four unknowns 4,, however the
effective number of equations is only three, since the following
identity always holds:
0%(04, — 0,0pAF) = D0%A, — OogAP = 0.
This is, by the way, just current conservation d,/¢ = 0. One
degree of freedom remains undetermined and this corresponds
to the gauge invariance
Ay (x) = Ay (x) + 0,A(x),
which is also a solution to the Maxwell equations for an
arbitrary A(x), since
004A — 0,00 A =00, — 9,0 = 0.
One may choose an arbitrary gauge condition as a fourth
equation, for example the Lorentz gauge
0 A% =
which is reached by the gauge transformation
Ay =Ag + 0,4, OAp = —0,A%
The latter equation can be solved for A; and with this A, the
Maxwell equations become
04, — (9,054 + 8,050PA,) = DAL = — ],
EINSTEIN EQUATIONS:
Solving the Einstein equation means solving for g,,,,, hence there
are ten unknowns. There are also ten equations, however, as for
the electro-dynamic case, differentiation w.r.t u yields T’W‘.# =0
due to energy-momentum conservation (4.9) and G‘”j# = 0 due
to the contracted Bianchi identity (4.5). So, effectively, there are
only 10 — 4 = 6 equations left.
As it turns out, the g, (x)-fields are determined by the Einstein
equations only up to arbitray coordinate transformations
x'(x) = fH(x),
equivalent to A, = A, + d,A in the electro-dynamic case. As was
the Lorentz gauge, here the so-called Harmonic gauge
' =g, = 0|
is an elegant gauge condition. For a standard Minkowski
coordinate system, this holds automatically, so for a weak
gravitational field, the harmonic coordinate system is nearly
Minkowskian.
WHY THIS GAUGE IS CALLED HARMONIC:
In mathematics, a function f(x), x € R", is called harmonic, if it
obeys the Laplace equation
Af(x) =0.

The four-vector generalization of the Laplacian is O = d,0%,

whose covariant pendant is, applied to a function f, given by
9" f.u;v- Using those generalization, one may call f harmonic if

0 = 9" fuw = 9" fw = 9" (f.u,v - Flpwf./l) =0f - Faf,ﬂ-
Now, consider f to be x* and use Ox* = Y3, x* = 08y = 0.
Thus, the coordinates x% are harmonic, if

g"x%,., =0 o T'=0.
Note, that f was not a vector, thus one can take only the a-
component of x* to equal f, which is neither a scalar nor a
vector. Thus, this condition is not a tensor equation.

5.5 Einstein-Equation from Variational Principle
Let’s postulate an action I which can be decomposed into a
matter and a gravitational part,

I =1y +1;.
GRAVITATIONAL PART:
The action should be a scalar, thus an educated guess is

I; = ~TenC f d*x \/—R
To calculate the variation 61, consider
5(/3R) = 6(/39" R,)
= g™ R8,/g + JGRWSG® + J3g" SR,
FIRST TERM: For a matrix 4 with a := det 4, consider
a '8a =6Ina = 6IndetA = Indet(4 + §A) — Indet A

= Indet(A + 64)/det A = Indet(A71(A + 64))

=Indet(1 + A7154) = In(1 + TrA~164) =~ Tr A"15A.
Here, it was used that A~164 « 1. Analogous it holds that

1
509=9"00 < 6\/_——\/—=—J_g Y8 G-

SECOND TERM: Note that g**g,,, = &y Variation yields
w69 + 989, =0 |- g*
e 89 =-g"9"5g,
THIRD TERM: The third term turns out to vanish after
integration with d*x.
ALL TOGETHER: Thus, what remains is

6l = 16 Gj \/_ g’“’R R,uv) 59;41/
MATTER PART:
The variation of the matter part can be given as

1
8ly = Ej d*x \/ETWSQMV,

which is a scalar, since d*x \/5 with g == —det g,,, is a scalar
volume element and R is the Ricci scalar.
ALL TOGETHER:
Thus, from the variation principle, the condition for a extremal
total action reads
! <1 HYR R’“’) + 1T‘”’ =0

16mG \29 2 T

which is just equivalent to the Einstein equations.




6 The Schwarzschild Solution

6.1 Standard Form of the Metric
ASSUMPTIONS:
The Schwarzschild solution is a solution for a static, isotropic
gravitational field, i.e. the field of a point mass. Thus, the metric
should be independent of t and only depend on rotational
invariants, which are
XX, X-dx, di-dXx.
Thus, the most general form of a spatially isotropic metric reads
ds? = —Adt?>+Bdtxdx + C(¥ dx)? + D dx?,
where 4, B, C, D are arbitrary function of r only.
DERIVE THE STANDARDFORM OF THE METRIC:
Adopting spherical coordinates x* = rsin 8 cos ¢, x? =
rsin@sing,x® =rcosf yields after some calculation
X2 =12 Xdi=rdr, dX?>=dr*+1%d6?+r?sin?0d¢p>.
Plugging this into the ds?-formula and properly redefining
A, B, C,D (e.g. absorb factors of 7,72 into them) yields
ds? = —Adt?>+ Bdtdr + C dr? + D(d6? + sin? 8 d¢?).
We now introduce new coordinates t' = t,7'?> = D(r), 8’ =
6,¢" = ¢ and again redefine 4, B, C (they are now functions
of r') such that
ds? = —Adt> + Bdtdr' + Cdr'? +1'%(d6? + sin? 0 d¢?).
Let us also introduce a new timelike coordinate t’, defined by

1
dt' = CIJ(A dt _EB dr’)

1
& Adt?—Bdtdr' =—dt'? ——dr'?,
"= 42 A"

where ®(t,r') is an integrating factor. The latter equation was
obtained after squaring the former one. Defining new function
A" = 1/A®? and B’ = C + B/4A and omit all dashes yields

|d52 = —Adt*+ Bdr?+1r?*(d6? +sin? 6 d¢2).|

6.2 Specific Form of the Metric
EINSTEIN EQUATIONS AND BOUNDARY CONDITIONS:
In vacuum, outside of the point mass, itis 7, = 0 and according
to 5.2 the Einstein equations read simply
R,, =0.
The boundary conditions read
=
since for A = B = 1 the Minkowski metric (in spherical
coordinates) reads, as it should far away from the point mass.
FIND A(r) AND B(r):
From the boxed equation above, one can read out the metric
9y = diag(—A4, B,r%,r*sin® 0)
and thus, calculate the affine connection thus the Ricci tensor
(see Hobson p. 200 for results). As a result, it turns out that
Reo Ry 1 (A" B\ .
2 tE T _E<Z+E) =0
which must equal zero, since R, = 0 and thus Ryq = Ry; = 0.
This is equivalent to
< O0=AB+AB'=(A4B) < AB=const.=1
The constant must be 1 to obey the boundary conditions.
Plugging in this result B = 1/A4 into the R,, component yields

! const.
Ryy=A-141rA=-14+0A4A)'=0 & A=1+
Note, that we found
—A=gyp=—1—-2¢py=—-1+2GM/r
as a Newtonian limit in 3.2. Apparently, the constant is —2GM.
Altogether, the Schwarzschild solution (1916) reads

2GM
T

1
2 _ _ 2 2 2 2 P02 2
ds* = (1 )dt +—26Mdr + r*(d0* + sin“ 0 d¢*).

1-—

r

6.3 Singularities and the Schwarzschild Radius
BIRKHOFFS THEOREM:

Similar to Newtons theory, outside of a spherical body the
metric is the same as for a point mass equal to the total mass of
the body.

SINGULARITY AT THE SCHWARZSCHILD RADIUS:
Apparently, there is a singularity in the metric at the
Schwarzschild radius

s1 2GM

M
s = 2GM = 7 ~ 2,95 km - M—O, Mg = mass of sun.

First note, that for the sun it holds Ry > 75, thus at v = 75 the
Schwarzschild matric is not applicable anyway. However, also
for compact objects with a radius R < 15, the local physical
quantities (e.g. Riemann, Ricci tensor) are perfectly well
behaved also around and at 75. That is, R,,, (15) = 0 as it should.
For example, one finds (Hobson, p. 200), using B = 1/A4,
Ryy=A—-14+1A'=1-2GM/r—1+712GM/r* =0,
which obviously holds for any r # 0. That is, the apparent
singularity at r = r5 is only a coordinate singularity and can be
transformed away by an appropriate coordinate transformation.
SINGULARITY AT r = 0:
In contrast to r = rg, the singularity at r = 0 is real and cannot
be get rid of by changing coordinates. The curvature at r = 0 is
infinite.
GLOBAL SIGNIFICANCE OF THE SCHWARZSCHILD RADIUS:
Although locally everything is well behaved at r5, globally s is
special. Using 6.2 and dt2 = —ds?, one finds that

dtz—d7'2+"', r —
—ds? = dt? ={ (pos)dt* + (neg)dr® + -, 1 >15,
(neg)dt? + (pos)dr? + -+, r<rg

where (pos) means that this prefactor is positive. In the end, this
is the reason, why nothing can escape the Schwarzschild radius.
HAWKING TEMPERATURE:
However, because of quantum effects, it is not true that nothing
escapes the Schwarzschild radius or a black hole. A black hole is
an almost perfect black body with the temperature, called
Hawking temperature Ty given by

kgTy = he?/8nGM ~ 1077 K- Mg /M.

6.4  Gullstrand—Painlevé Coordinates
Change the Schwarzschild coordinates (t,r, 8, ¢) to (T,r, 8, ¢),

where
T 1 |Jr/26M -1
T=t+4GM —+—In[—| |.
26M 2 |[r/26M + 1
After transformation, the metric in those new coordinates reads
2
ds? = —dT? + (dr +/2GM /7 dT)" +r?(d6? + sin? 0 d¢p?),

which apparently is non-diagonal, but without any singularities
atr = 2GM. In those coordinates, the so called Kretschmann
scalar reads

K = Ry pe R¥P7 = 12

(2GM)? 12 ;1\
ré6 - Ts (?)

however, being a scalar, it is coordinate independent. Note also,

that the singularity » = 0 appears again in K.

uvpo

6.5 Generalization: The Kerr Solution
For a black hole with electric charge Q and intrinsic angular

momentum S, the Kerr solutions reads
sin? 8
2

A
ds? =— 2 (dt — asin? 0 dg)? + (r? +a®)dp —a dt)2

p?

+ Kdr2 + p2d6?,
where

a:=S/M,

A:=71%—-2Mr+a*+Q?% p?:=1r%+a?cos?0




7 Gravitational Waves

7.1  Magnitude of Gravitational Waves
Gravitational wave effects are extremely small. An atomic
transition can emit a photon but also an electron. For the
emission rate, itis [, ~ a ~ e?and [yr ~ G. Since [y, /Ty is
dimensionless, a factor of dimension energy squared is missing,
which turns out to be the energy level difference:

T COET L) o (A0

Ton e? a\Ep lev/)'’
where Ep = /Ac® /G is the Planck energy. The rate for
gravitation is so low that it will never be measured. However,
gravitation is attractive only, so macroscopic sources can add up
to measurable effects.

7.2 Weak Field Approximation and Harmonic Gauge
FIELD EQUATIONS IN WEAK FIELD APPROXIMATION:
The Einstein equations are non-linear, so to solve them we will
adopt a weak field approximation, where

v =M + hyyr || <1, 71y, = diag(-1,1,1,1).
The affine connection and the Ricci tensor then read

1
M, = E”M (hpv.u + hopy — huv.p) +0(h?),
Ry =T%,, =T, + 0

o Py

= %(th — By py = a1 ) + O(RD),
where it was used that, in first order of h, indices are raised and
lowered with 7. Using the Einstein equations in the form of 5.2
then gives

2R,, = Oh

v =B oy =+ h = —16TGyS,,,

wpv
where
O =n"8,0, Suw =Tuw — 3N T
The forces are assumed to be unimportant in the source and the
ordinary conservation law auT”V = 0 holds.
CHOICE OF COORDINATES/HARMONIC GAUGE:
Consider a coordinate transformation
x't = x* + at(x),
where ¢ is similar small as h. Then, the metric transforms like
dx'*ox"
g =——
dxP 0x°
S "+ = (84 +a”,) (6% +a¥ )7 + h*o)
S W =W 4 gl + gVt
Since the Einstein equations are coordinate independent, h' also
solves them, if h solves them. This gauge invariance is removed,
for instance, by the harmonic gauge fixing condition (see 5.4)
guvl—vauv =0,
which by plugging in I" and g from above now reads

po

1 1
_ A _ pui u A
0=nH 577 p(hvp,u + hypy — huv,p) =h", = Eh u
1
mooo_ Tpu
= h v = Eh wv-
In this gauge the following terms in the field equations
1 1
p i - p i — _pt
—h wpyv h vui — _Eh ouyv Eh Auv — —h Auv

cancel out a third term and what remains is simply
Ohy, = —16mGyS,,.

7.3 Solution of the Weak Field Equations

GENERAL SOLUTION:

The Green’s function G* of the O-operator, i.e.
OG*(x,x") = —4mé*(x — x"),

reads

(= FI1x-%D)
| — x| '
Thus, the solution of the last equation in 7.2 reads

hy (1) = 4GNJ.dx’ S (x")G*(x,x")

46, [ arp S @R
X — x|

where only the time-integral was evaluated. The upper sign is
for the retarded solution (where the mass configuration of the
past creates the fields now), the lower sign the adcanced
solution (where the mass configuration of the future creates the
fields now). Obviously, only the former is implemented in
nature.
PLANE WAVE SOLUTION IN VACUUM:
Invacuum, i.e. S,, = 0 = [h,, = 0, the plane wave ansatz

hy(x) = g€
with constant polarization ¢, = ¢,, yields
Ohyy = —k,kPhy =0 = kPk, = 0.
Thus, gravitons have to be massless.

NUMBER OF INDEPENDENT POLARIZATIONS:
The gauge fixing condition from 7.2 yields

GE(x,x") =

’

; o i o
ikgx +€;V€ ikgx

kye", = %kvsuu.
Those four equations fix four of the ten independent
components of ¢,,,. Furthermore, there is a so-called residual
Gauge invariance. Consider the coordinate transformation
x'H = xH 4 ighethvd” — jgrremikve? =i yit 4 pi

From 7.2 we know, how h;w transforms, namely

Ry = Py + Ny + My = (€ + Ky + kvau)eikv"v +c.c.
So obviously, the polarization transforms as

& = & t Ry, + kyay.

Here, we have four free parameters Ay, which fix again four
components. Since &, still obeys the harmonic gauge condition,
those four components can be fixed in addition to the four
already fixed with the normal gauge condition. So we are left
with 10 — 4 — 4 = 2 independent polarizations. Let’s proof that
&, indeed fulfills the harmonic gauge condition:

kye't, = %kve'”u.
Plugging in the formula for £*, and using k? = 0 yields
S ke, +kyktay, + kd,at = 2, (e, + kiay, + k,at)
o ket kkyat = ke, + ki,
e ket = %kve"u.

So, if ¢ fulfills the harmonic gauge, so does ¢’, too, always.




8 The Robertson-Walker-Metric

8.1 The Metric in Comoving Coordinates

THE METRIC:

The Robertson-Walker-Metric is a metric for a spatially
homogenous and isotropic universe, i.e. a universe of an
“smeared-out cosmic fluid”. In comoving coordinates it reads

2
1— kr?
where k € {0, +1} and a = a(t) is the cosmic scale factor. Here, t

is the cosmic time, related to a scalar quantity, e.g. the
temperature T, of the photons: t = t(T,). The coordinates , 8, ¢

—ds? = d72 = dt? — g2 ( +1r%(d6? + sin? 6 d(p2)>,

are constant got a comoving (freely falling) galaxy.
CURVATURE:
The curvature of the spatial subspace (3-space) reads

k
K(s) (t) = E

For k = 0, the 3-space is flat, for k = %1 it has constant
positive /negative curvature. It is finite for k = 1, but may be
infinite for k = 0, —1 (it may still by finite, e.g. flat with periodic
boundary conditions).

8.2 Current and Energy Momentum Tensor

DEFINITION:

For comoving galaxies, one can define a 4-current
]g”al(t) =ngu(Ou*, u¥ =(1,0,0,0),

where n,, is the number density of galaxies. The average cosmic

ga
matter has the energy momentum tensor

T,uv = (p(t) + p(t))uuuv + g;}}yp(t)-
For the Minkowski metric, this would read T, = diag(p, p,p,p),
which hints at the fact, that p is something like the energy
density and p the pressure.
CONSERVATION LAWS:
From the conservation laws J,, = T*", = 0 it follows

d 3 d 5_

E(pa ) +paa =0.

(For derivation see exercise 12.2)

The first equation is simply particle number conservation. The
second equation is analogous to dQ = dU + dW from
thermodynamics with U = pa® and dW = p dV = p 9,a5. Thus,
the second equation means that there is no energy flow out of or
into the universe.

ng,a® = const,

8.3 Hubble-Redshift
REDSHIFT DUE TO EXPANSION:
Set the earth (observer) into the origin of the coordinate system
and consider light being emitted by a comoving galaxy (r, 8, ¢
fixed). For the light travelling radially to earth, it holds df =
de = 0 and thus
dr?

1—kr?
The first wave crest is emitted at t; and observed at ¢,,.
Integrating the above equation, taking into account that the light
travels in —r-direction, yields

L) fo dr fto dt
1) = — _ = —_
k ! Tl V 1 - krz tl a

The next wave crest then is emitted about At; and received
about At later:

dt? =0 =dt? — a?

to+Atg dt

L(r) = J; o

1+Aty
Subtracting those two equations yields

to+Aty dt to dt to+Aty dt t1+Atg dt
ti+at; @ t, @ t a t a

1 0 1
which can be made visual by the following sketch:

|At1| |At0| t
[ [ [

5] to
If At; is so small that a doen’t vary much during this time, the
integral can be evaluated as a product:
0~ At, Aty vo _ Aty a(ty)
a(ty) a(ty) v Aty a(ty)
where v; are the frequencies of the light. Since t; < t, for an
expanding universe (i.e. a(t;) < a(t,)), we observe redshifts,

HUBBLE’S LAW:
The redshift z reads (1 = c¢/v)
-4 v a(to)
z=——=——1= -1
e Vo a(ty)

For a not too far away galaxy, a(t,) may be Taylor expanded
around t:

a(to) 1
Z =~ - —-1= - -1
a(ty) + a(to)(ty — to) 1+ a(to) (t, — ty)
alty) ~ 0

a(to) a(to) ry £
~1-— ti—ty)) —1= —=Hy—.

a(to)( 1~ b a(ty) ¢ o¢

Here it was used, that also t; — ty is smalland t; — t, = —1y/c.

This is Hubble’s law.




9 The Expanding Universe

9.1 The Friedmann Equations

THE REDUCED FIELD EQUATIONS:

The Robertson-Walker-Metric had components
gee=-1, g =0, gi=a*g;X),

where the g;; can be read off from 8.1. The Einstein field

equations from 5.2 read

R, = —81GyS,y, &v=ﬂw—%ng%
Using the Robertson-Walker-Metric, one will find
Ry =3d/a, Ry =0, Rjy=—(ad+ 2a% + 2k)g;;.
Taking the energy-momentum tensor from 8.2 yields
T = g"' T,y = (p +p)g°° +ps*, =3p—p,
where g°° = —1, 6%, = 4. Thus, S, reads

1 1
See = E(P +3p), Si=0, Sj= Eazgij(p - p).

Thus, the reduced (by the Ansatz) field equations read

3d = —4nG(p + 3p)a, ad + 2a? + 2k = 4nG(p — p)a’.
THE FRIEDMANN EQUATIONS:
Multiplying the first of the above equations with a and subtract
three times the second equation gives the first Friedmann
equation:

. 8nG
F, & d>+k= Tpaz.

For the second Friedmann, recall d;,pa® + pd.a® = 0 from 8.2.
Multiplying this by dt/da yields

F, & ipa3 = —3pa?
11 da .

We have three unknowns a, p, p; thus, we need a third equation,
e.g. the equation of state:

F PN = p(p) = {0, non-relativistic matter
o p=prip p/3, ultra-relativistic matter’

9.2 Qualitative Insights from the Friedmann Equations
RADIANT WAS DOMINANT IN EARLY UNIVERSE:
The Friedmann equation F;; gives for non- and ultra-relativistic
matter

non-rel.: Opai=0 = p~ad
{ultra-rel.: ogpad =—pa? = p~a”
Hence, if at present time we have 0 < p, o1 < pPprel. then, since a
is increasing, there must have been a time, where py.re;. > Pnorels
i.e. radiation was dominant in the early universe, i.e. we had a
hot big bang.
THERE WAS A BIG BANG, L.E. a = 0:

Recall the first reduced field equation from 9.1. From a = 0 and
p + 3p = 0 (which holds for all known matter), we have d@ < 0.
Thus, a(t) is concave and since the present (t = t,) expansion

rate is positive,

FII

2 4°

H, :Et0>0’ alt) H,
there must have been a big bang and P
some time tzp, where a(tgz) = 0. el Iy - CONCave
AGE OF THE UNIVERSE: = vy ' A

Since a(t) is concave, an upper limit fu
t, can be set on the age of the universe, namely
tg=Hyt =~ 13-10%yr.

CRITICAL DENSITY:
At present time, F; is equivalent to

_ 3 AN 3k _ 3H¢

Po = %(Ho + a_(2)> =: pPoc t+ _87TGa§' Poc = 8nG
Obviously, p, § Poc = k é 0. We have measured that
Q=py/popc = 0150, <0.2.

Q,, takes all matter (incl. dark matter) density into account.

9.3 More Detailed Behavior of the Scale Factor
MATTER DOMINATED UNIVERSE:
Let's assume, k = 0. In the matter dominated universe (p = 0),
from 9.2 or F;; in 9.1 it is known that p ~ a~3. Hence,

FF = d*~pa®~a' = a~t?3
For k # 0, solutions can also be found: k<0
The solution for k > 0 is qualitatively at) k=0
different from the others; here there is Pl

a big crunch. "f: """ - Jf >0
So, choosing tz = 0, we may write / *
a(t) = ag(t/te)*’? tp ‘
and hence a(tgg) = 0 as well as
“a_2 t 2 8,7 -10°
= —_- = — —3 = —= , 1 .
a3t ° = 3H, yr

Thus, from the behavior a ~ t2/3, the age of the universe is 2/3
of its maximum possible value from 9.2. The problem is: This is
younger that observed stars.

RADIATION DOMINATED UNIVERSE:

For early time, we can neglect the k-term in F; as will be justified

a posteriori. From F;; we had in 9.2 already p ~ a™*, hence
8nG

a? = pa’~a? =

By the Stefan-Boltzmann law p ~ T*, we have T ~ a™2. It follows
that a? ~ t™' and pa? ~ a2 ~ t™1, whereas k ~ t°. Thus, for
early times, the k-term could be neglected.

F = a~ t/2,

9.4  Accelerating Universe: Vacuum Energy

THE COSMOLOGICAL CONSTANT:

In 1917 Einstein proposed a generalization for his field
equations (see 5.1) to make a static universe possible by
introducing a constant A :

1 _
Ry — EguvR = —81G(Ty — Agyn) = —81GT,.

For a perfect fluid, like in 8.2, the energy-momentum tensor
takes the form

Tuv = (P + p)uuuv + ) e Ag,uv =: (ﬁ + ﬁ)u,uuv + g,uvﬁ:
which defines

p=p+A4 p=p—-4

For A > 0, the “vacuum energy density” increases the energy
density but reduces the pressure. By replacingp = pandp = p
all the previous results remain valid. The first Friedmann

equation becomes

_— 2 8nG _, 8nG , A,
F, & a +k=Tpa =Tpa +§a
with the cosmological constant

A = 8nGA.
THE STATIC EINSTEIN-UNIVERSE:

For a static universe (@ = 0) the Friedmann equations read

B g 8nG 4 A,
g =—3—pa’t3a’,
From g = —3p (don’t know where this comes from) follows p =
2. Plugging this into F; yields
A
=.k/A d of =—"
a / and of course  p =_—-
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