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1 Lorentz-Transformations 
 

1.1 Postulates of Special Relativity 
Einstein came up with two postulates in 1905: 

P1:  Principle of relativity between inertial coordinate systems   

  (just as for Galileo transformations) 

P2:  Constancy of the speed of light in vacuum, irrespective of  

  the motion of the source or detector 

Specifically, P1 and P2 follow from the statement: 

  The laws of nature are invariant under Lorentz- 

  transformations.   
 

1.2 Lorentz-Transformations 
Lorentz-transformations act between two space-time cartesian 

coordinate systems: 

𝑥′𝛼 = Λ  𝛽
𝛼 𝑥𝛽 + 𝑎𝛼 ,          𝛼 = 1, 2, 3, 0, 

where Λ  𝛽
𝛼  and 𝑎𝛼  are constants (they become space-time 

dependent in general relativity, which makes the Lorentz-

transformations non-linear) and the Λ  𝛽
𝛼  obey 

Λ  𝛾
𝛼 Λ  𝛿

𝛽
𝜂𝛼𝛽 = 𝜂𝛾𝛿 = diag(1, 1, 1, −1). 

PROPER TIME: 

With this property, the proper time 

𝑑𝜏2 ≔ 𝑑𝑡2 − (𝑑𝑥1)2 − (𝑑𝑥2)2 − (𝑑𝑥3)2 = −𝜂𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽 

is Lorentz-invariant, since 

𝑑𝜏′2 = −𝜂𝛼𝛽𝑑𝑥
′𝛼𝑑𝑥′𝛽 = −𝜂𝛼𝛽Λ  𝛾

𝛼 Λ  𝛿
𝛽

⏟      
=𝜂𝛾𝛿

𝑑𝑥𝛾𝑑𝑥𝛿 = 𝑑𝜏2. 

MICHELSON-MORLEY EXPERIMENT: 

This explains the Michelson-Morley experiment 1878. They 

measured 

|𝑐∥ − 𝑐⊥|

|𝑐∥ + 𝑐⊥|
≤ 3 ⋅ 10−10. 

The earth’s relative velocity is 𝑣⊕ 𝑐⁄ ∼ 10−4 and from thus it 

follows that one would theoretically (classically) expect 

|𝑐∥ − 𝑐⊥| |𝑐∥ + 𝑐⊥|⁄ = (𝑣⊕ 𝑐⁄ )
2
∼ 10−8 ≫ 3 ⋅ 10−10. However, 

from 𝑑𝜏2 = 𝑑𝜏′2 follows actually |𝑐∥ − 𝑐⊥| |𝑐∥ + 𝑐⊥|⁄ = 0. That is, 

because if the light wave in one system propagates with 

√(𝑑𝑥1)2 + (𝑑𝑥2)2 + (𝑑𝑥3)2

𝑑𝑡
= |
𝑑𝑥⃗

𝑑𝑡
| = 1 (⋅ 𝑐) 

⟺      0 = 𝑑𝑡2 − (𝑑𝑥1)2 − (𝑑𝑥2)2 − (𝑑𝑥3)2 = 𝑑𝜏2 

= 𝑑𝜏′2 = 𝑑𝑡′2 − (𝑑𝑥′1)2 − (𝑑𝑥′2)2 − (𝑑𝑥′3)2 

⇔      1 =
√(𝑑𝑥′1)2 + (𝑑𝑥′2)2 + (𝑑𝑥′3)2

𝑑𝑡′
= |
𝑑𝑥⃗′

𝑑𝑡′
| = |

𝑑𝑥⃗

𝑑𝑡
|. 

TRANSFORMATION MATRIX: 

For 𝑣⃗ = 𝑣𝑒̂𝑥 one might guess 

Λ = (

𝛾 0 0 𝛾𝑣
0 1 0 0
0 0 1 0
𝛾𝑣 0 0 𝛾

)     ⟹      𝑥′ = Λ𝑥 = (

𝛾(𝑥1 + 𝑣𝑡)
𝑥2
𝑥3

𝛾(𝑡 + 𝑣𝑥1)

) 

since this yields Galilei transformation for 𝛾 → 1. So it should be 

𝛾 → 1 for 𝑣 → 0. Confirm, that 

Λ  𝛾
𝛼 𝜂𝛼𝛽Λ  𝛿

𝛽
= 𝜂𝛾𝛿     ⟺      Λ𝑇𝜂Λ = 𝜂. 

For that to be the case, it has to be 𝛾 = 1/√1 − 𝑣2. 

 
 
 
 
 
 
 
 

1.3 Lorentz Groups 
All the transformations 

𝑥′𝛼 = Λ  𝛽
𝛼 𝑥𝛽 + 𝑎𝛼  

form the Poincaré group. The subgroup with 𝑎𝛼 = 0 forms the 

homogenous Lorentz group. The sub-subgroup with Λ 0
0 ≥ 1 and 

det Λ = 1 is called proper Lorentz group, which is a Lie group 

and hence can be constructed with generators. Three generators 

for rotations (Euler angles) and three for boosts (components of 

𝑣⃗).  

The improper Lorentz group (where Λ 0
0 < 1 or det Λ ≠ 1) 

essentially consist of space and time reflections.  
 

1.4 Lorentz Tensors 
Lorentz tensors are quantities, which transform homogenously 

under Lorentz transformations: 

 scalars:  𝑠′(𝑥′) = 𝑠(𝑥), 

 contravar. 4-vectors: 𝑉′𝛼(𝑥′) = Λ  𝛽
𝛼 𝑉𝛽(𝑥), 

 covar. 4-vectors: 𝑊𝛼
′(𝑥′) = Λ𝛼

  𝛽
𝑊𝛽(𝑥), 

where Λ𝛼
  𝛽
= 𝜂𝛼𝛾Λ  𝛿

𝛾
𝜂𝛿𝛽 . 

New Lorentz tensors can be built from old ones (𝑅, 𝑆) by 

 linear combination: 𝑇   𝛽
𝛼 = 𝑎𝑅   𝛽

𝛼 + 𝑏𝑆   𝛽
𝛼  

 direct product: 𝑇   𝛽  𝛿
𝛼  𝛾

= 𝑅   𝛽
𝛼 𝑆   𝛿

𝛾
 

 contraction:  𝑇 = 𝑅  𝛼
𝛼  

Tensor transform like 

𝑇                      𝛽1𝛽2…𝛽𝑚
′𝛼1𝛼2…𝛼𝑛

= Λ   𝜇1
𝛼1 Λ   𝜇2

𝛼2 ⋯Λ   𝜇𝑛
𝛼𝑛     Λ𝛽1

   𝜈1Λ𝛽2
   𝜈2⋯Λ𝛽𝑛

   𝜈𝑛     𝑇                    𝜈1𝜈2…𝜈𝑚
𝜇1𝜇2…𝜇𝑛 . 

The components of the Minkowski-Tensor, the Levi-Civita-

Symbol and the zero tensor (all components zero) are 

independent from the inertial frame. 



2 Particle Dynamics 
 

2.1 4-Momentum 
RELATIVISTIC EQUATION OF MOTION: 

Suppose in the rest frame the force 𝐹⃗ is known and Newtonian 

dynamics 𝐹⃗ = 𝑝̇ holds. Then, a relativistic equation for a particle 

with rest mass 𝑚 and coordinates 𝑥𝛼(𝜏) could be 

𝑑𝑝𝛼

𝑑𝜏
≔ 𝑚

𝑑2𝑥𝛼

𝑑𝜏2
= 𝑓𝛼 . 

𝑚 and 𝜏 are scalars, 𝑥𝛼 is a Lorentz vector. Thus, if 𝑓𝛼 is also a 

Lorentz vector, this holds in any frame. In the rest frame, where 

𝑑𝑡 = 𝑑𝜏, it is 

𝑓rest
𝛼 = (𝐹⃗, 0), 

in an arbitrary frame it is 

𝑓𝛼 = Λ  𝛽
𝛼 (𝑣⃗) 𝑓rest

𝛽
= (𝐹⃗ + (𝛾 − 1) 𝑣̂(𝑣̂𝐹⃗), 𝑣(𝑣⃗𝐹⃗)), 

as follows from the Lorentz transformation for an arbitrary 𝑣⃗.  

COMPONENTS OF THE 4-MOMENTUM: 

Using (as known from 1.2) 

𝑑𝜏 = √𝑑𝑡2 − 𝑑𝑥⃗2 = 𝑑𝑡√1 − 𝑣 = 𝑑𝑡 𝛾⁄ , 

which is just time dilation, to get the components of 4-

momentum: 

𝑝𝜇 = 𝑚
𝑑𝑥𝛼

𝑑𝜏
= (

𝛾𝑚𝑑𝑥⃗ 𝑑𝑡⁄

𝛾𝑚 𝑑𝑡/𝑑𝑡
) = (

𝛾𝑚𝑣⃗
𝛾𝑚

) = (𝑝
𝐸
). 

Since 

𝐸 =
𝑚

√1 − 𝑣2/𝑐2
≈ 𝑚𝑐2 +

𝑚

2
𝑣2 +⋯, 

𝐸 is obviously the energy.  

CONSERVATION OF 4-MOMENTUM: 

If non-relativistically the energy and momentum are conserved, 

then the 4-momentum is also conserved  

∑𝑞𝑖
𝛼

𝑖

−∑𝑝𝑖
𝛼

𝑖

= 0, 

for incoming particles 𝑞𝑖
𝛼 and outgoing ones 𝑝𝑖

𝛼 . 

ENERGY-MOMENTUM-RELATION: 

The equation 

𝐸2 = 𝑝2 +𝑚2 

holds, since (using 𝑑𝜏2 = −𝜂𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽) 

𝑝2 − 𝐸2 = 𝜂𝛼𝛽𝑝
𝛼𝑝𝛽 = 𝑚2𝜂𝛼𝛽

𝑑𝑥𝛼𝑑𝑥𝛽

𝑑𝜏2
= −𝑚2

𝑑𝜏2

𝑑𝜏2
= −𝑚2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2 Electro-Magnetism 
4-CURRENT: 

Charged particles (charges 𝑒𝑛, positions 𝑥⃗𝑛(𝑡)) generate the 4-

current 

𝐽𝛼(𝑥) = (𝐽(𝑥), 𝜌(𝑥)) ≔∑𝑒𝑛𝛿(𝑥⃗ − 𝑥⃗𝑛(𝑡))
𝑑𝑥𝑛

𝛼

𝑑𝑡
𝑛

. 

This doesn’t look like a 4-vector, however it actually is, since 

𝐽𝛼(𝑥) = ∑∫𝑑𝑡′𝑒𝑛 𝛿(𝑥 − 𝑥𝑛(𝑡
′))⏟        

=𝛿(𝑥−𝑥𝑛)𝛿(𝑡−𝑡
′)

𝑑𝑥𝑛
𝛼(𝑡′)

𝑑𝑡′
𝑛

=∑∫𝑑𝜏𝑛 𝑒𝑛𝛿(𝑥 − 𝑥𝑛(𝜏𝑛))
𝑑𝑥𝑛

𝛼(𝜏𝑛)

𝑑𝜏𝑛
𝑛

, 

where the renaming 𝑡′ → 𝜏𝑛 was allowed since it’s only an 

integration variable. In this form, it is obvious, that 𝐽𝛼 is a 4-

vector. Using this current, charge conservation 𝜕𝑡𝜌 = −∇𝑗 can be 

written in the Lorentz invariant form 

𝜕𝛼𝐽
𝛼(𝑥) = 0. 

MAXWELL-EQUATIONS: 

In relativistic notation, the Maxwell equations read 

𝜕𝛼𝐹
𝛼𝛽 = −𝐽𝛽 ,          𝜖𝛼𝛽𝛾𝛿𝜕𝛽𝐹𝛾𝛿 = 0, 

where 𝐹𝛼𝛽 is the anti-symmetric field strength tensor. 

Classically, the electric and magnetic fields are used instead of 

𝐹𝛼𝛽 , but this is just a matter of notation/interpretation: 

𝐹𝑖𝑗 = 𝜖𝑖𝑗𝑘𝐵𝑘 ,          𝐹
0𝑖 = 𝐸𝑖 . 

The electro-magnetic force on a particle with charge 𝑒 is in 

terms of 𝐹𝛼𝛽 

𝑓EM
𝛼 = 𝑒𝐹   𝛽

𝛼
𝑑𝑥𝛽

𝑑𝜏
. 

In the particle’s rest frame that yields 

𝑓EM
𝛼 = 𝑒𝐹   𝛽

𝛼 𝛿   0
𝛽
= 𝑒𝐹   0

𝛼     ⟹      {
𝑓𝑖 = 𝑒𝐹  0

𝑖 = −𝑒𝐹𝑖0 = 𝑒𝐸𝑖
𝑓0 = 𝑒𝐹   0

0 = −𝑒𝐹00 = 0
. 

 

2.3 Energy-Momentum Tensor 
The energy-momentum is defined quite analogous as the 4-

current: 

𝒯𝛼𝛽(𝑥) ≔∑𝑝𝑛
𝛼(𝑡)

𝑑𝑥𝑛
𝛽

𝑑𝑡
𝛿(𝑥⃗ − 𝑥⃗𝑛(𝑡)),

𝑛

     𝒯𝛼𝛽 = 𝒯𝛽𝛼 . 

Whereas the 4-current describes densities and currents of 

charges, the energy-momentum tensor describes densities and 

currents of energy-momentum 𝑝𝛼 , a 4-vector, and hence has a 

second index 𝛼. Just as for the 4-current one can proof that 𝒯𝛼𝛽  

is indeed a tensor and with 𝑝𝛼 = 𝑚 𝜕𝜏𝑥
𝛼 it follows that 𝒯𝛼𝛽  is 

symmetric. Using 𝑓𝛼 = 𝜕𝜏𝑝
𝛼  yields 

𝜕

𝜕𝑥𝛽
𝒯𝛼𝛽(𝑥) ≔∑

𝑑𝜏

𝑑𝑡
𝑓𝑛
𝛼(𝑡) 𝛿(𝑥⃗ − 𝑥⃗𝑛(𝑡))

𝑛

. 

For either free particles or particles with localized interactions 

(like hard collision) there are conservation laws: 
𝜕

𝜕𝑥𝛽
𝒯𝛼𝛽 = 0. 

Not so, if there are long-range interactions. To rescue energy-

momentum conservation, one introduces force fields so that the 

total energy-momentum tensor is conserved: 
𝜕

𝜕𝑥𝛽
𝒯tot
𝛼𝛽
=

𝜕

𝜕𝑥𝛽
(𝒯particles

𝛼𝛽
+ 𝒯fields

𝛼𝛽
), 

where 𝒯particles is the 𝒯 as defined above. For example, the long-

range electro-magnetic force yields 

𝒯EM-fields
𝛼𝛽

= 𝐹𝛼𝛾𝜂𝛾𝛿𝐹
𝛽𝛿 −

1

4
𝜂𝛼𝛽𝐹𝛾𝛿𝐹

𝛼𝛿 , 

which has the components 

𝒯EM
00 =

1

2
(𝐸⃗⃗2 + 𝐵⃗⃗2)               (densitiy of field energy), 

𝒯EM
𝑖0 = (𝐸⃗⃗ × 𝐵⃗⃗)

𝑖
               (Poynting-Vector). 



3 Principles of General Relativity 
 

3.1 Einstein Principle of Equivalence (EEP) 
THE EEP: 

Einstein postulated the following EEP: 

 In an arbitrary gravitational field, it is possible to choose a 

 locally inertial coordinate system (LICS), so that in a 

 sufficient small region of space-time the laws of nature take 

 the same form as in the absence of gravity (i. e. special  

 relativity holds in the LICS). 

EQUALITY OF INERTIAL AND GRAVITATIONAL MASS: 

Consider a non-relativistic particle 𝑥⃗𝑝 and 𝑁 other such particles 

𝑥⃗𝑛 with a known Force 𝐹⃗(𝑥⃗𝑝 − 𝑥⃗𝑛) (i. e. electrostatic) within a 

static, homogeneous gravitational field 𝑔⃗ = const. The equation 

of motion for the particle 𝑥⃗𝑝 then reads 

𝑚𝑖

𝑑2𝑥⃗𝑝

𝑑𝑡2
= 𝑚𝑔𝑔⃗ +∑ 𝐹⃗(𝑥⃗𝑝 − 𝑥⃗𝑛)

𝑁

𝑛=1

, 

where it was distinguished between the inertial and 

gravitational mass. After a transformation 𝑥⃗′ = 𝑥⃗ + 𝑔⃗𝑡/2, 𝑡′ = 𝑡, 

this equation looks as follows: 

𝑚𝑖

𝑑2𝑥⃗𝑝
′

𝑑𝑡2
=∑ 𝐹⃗(𝑥⃗𝑝

′ − 𝑥⃗𝑛
′ )

𝑁

𝑛=1

+ (𝑚𝑔 −𝑚𝑖)𝑔⃗. 

Obviously, if 𝑚𝑔 = 𝑚𝑖  the observer in 𝑂′ sees the same physics 

as the one in 𝑂 just without gravitational field! That’s just what 

the EEP states.  

PARTICLE IN AN EXTERNAL GRAVITATIONAL FIELD: 

Now, the equation of motion of a particle in an external 

gravitational field is derived. In the freely falling LICS, the 

equation of motion is given by, according to the EEP, 

𝑑2𝜉𝛼 𝑑𝜏2⁄ = 0 

with the proper time 

𝑑𝜏2 = −𝜂𝛼𝛽𝑑𝜉
𝛼𝑑𝜉𝛽 , 

just as in  1.2. In arbitrary coordinates 𝑥𝜇  this yields 

0 =
𝑑2𝜉𝛼

𝑑𝜏2
=
𝑑

𝑑𝜏
(
𝜕𝜉𝛼

𝜕𝑥𝜇
𝜕𝑥𝜇

𝜕𝜏
) =

𝜕𝜉𝛼

𝜕𝑥𝜇
𝜕2𝑥𝜇

𝜕𝜏2
+

𝜕2𝜉𝛼

𝜕𝑥𝜇𝜕𝑥𝜈
𝜕𝑥𝜈

𝜕𝜏

𝜕𝑥𝜇

𝜕𝜏
. 

Contracting this equation with 𝜕𝑥𝜆/𝜕𝜉𝛼 yields 

0 = 𝛿𝜇
𝜆
𝜕2𝑥𝜇

𝜕𝜏2
+
𝜕𝑥𝜆

𝜕𝜉𝛼
𝜕2𝜉𝛼

𝜕𝑥𝜇𝜕𝑥𝜈
𝜕𝑥𝜈

𝜕𝜏

𝜕𝑥𝜇

𝜕𝜏
=
𝜕2𝑥𝜆

𝜕𝜏2
+ Γ   𝜇𝜈

𝜆
𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
, 

where the “affine connection” (which is no tensor!) is given as 

Γ   𝜇𝜈
𝜆 ≔

𝜕𝑥𝜆

𝜕𝜉𝛼
𝜕2𝜉𝛼

𝜕𝑥𝜇𝜕𝑥𝜈
. 

The proper time in terms of the new coordinates is given as 

𝑑𝜏2 = −𝜂𝛼𝛽
𝜕𝜉𝛼

𝜕𝑥𝜇
𝜕𝜉𝛽

𝜕𝑥𝜈
𝑑𝑥𝜇𝑑𝑥𝜈 = −𝑔𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈 , 

where 𝑔𝜇𝜈  is the metric tensor, which is defined as 

𝑔𝜇𝜈 =
𝜕𝜉𝛼

𝜕𝑥𝜇
𝜕𝜉𝛽

𝜕𝑥𝜈
𝜂𝛼𝛽 . 

For Γ   𝜇𝜈
𝜆 = 0, the particle does not feel a gravitational force. 

THE AFFINE CONNECTION IN TERMS OF THE METRIC: 

Take the derivative of the equation for the metric above: 

𝜕

𝜕𝑥𝜆
𝑔𝜇𝜈 =

𝜕2𝜉𝛼

𝜕𝑥𝜆𝜕𝑥𝜇
𝜕𝜉𝛽

𝜕𝑥𝜈
𝜂𝛼𝛽 +

𝜕𝜉𝛼

𝜕𝑥𝜇
𝜕2𝜉𝛽

𝜕𝑥𝜆𝜕𝑥𝜈
𝜂𝛼𝛽

= Γ   𝜆𝜇
𝜅
𝜕𝜉𝛼

𝜕𝑥𝜅
𝜕𝜉𝛽

𝜕𝑥𝜈
𝜂𝛼𝛽 + Γ   𝜆𝜈

𝜅
𝜕𝜉𝛼

𝜕𝑥𝜇
𝜕𝜉𝛽

𝜕𝑥𝜅
𝜂𝛼𝛽 = Γ   𝜆𝜇

𝜅 𝑔𝜅𝜈 + Γ   𝜆𝜈
𝜅 𝑔𝜇𝜅 . 

Adding/subtracting the same formula with interchanged indices 

𝜇 ↔ 𝜆 and 𝜈 ↔ 𝜆 yields 
𝜕

𝜕𝑥𝜆
𝑔𝜇𝜈 +

𝜕

𝜕𝑥𝜇
𝑔𝜆𝜈 −

𝜕

𝜕𝑥𝜈
𝑔𝜇𝜆 = ⋯ = 2Γ   𝜇𝜆

𝜅 𝑔𝜈𝜅 . 

Define the inverse metric as 𝑔𝜇𝜈  such that 𝑔𝜇𝜈𝑔𝜈𝜌 = 𝛿𝜌
𝜇

. The 

contraction of the equation with 𝑔𝜈𝜎  yields 

Γ   𝜆𝜇
𝜎 =

1

2
𝑔𝜎𝜈 (

𝜕

𝜕𝑥𝜆
𝑔𝜇𝜈 +

𝜕

𝜕𝑥𝜇
𝑔𝜆𝜈 −

𝜕

𝜕𝑥𝜈
𝑔𝜇𝜆). 

 

3.2 Newtonian Limit 
Consider a non-relativistic particle, that is to say 

𝑑𝑥

𝑑𝜏
≪
𝑑𝑡

𝑑𝜏
, 

we is supposed to obey the Newtonian equation of motion 

𝑑2𝑥⃗

𝑑𝑡2
= −∇𝜙𝑁 ,          𝜙𝑁 = −

𝐺𝑀

𝑟
, 

where the mass 𝑀 is considered to be small. 

For a non-relativistic particle in a week and static gravitational 

field the relativistic equation of motion of 3.1 reads 

0 =
𝜕2𝑥𝜂

𝜕𝜏2
+ Γ   𝜇𝜈

𝜂 𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
≈
𝜕2𝑥𝜂

𝜕𝜏2
+ Γ   00

𝜂
(
𝑑𝑡

𝑑𝜏
)
2

, 

where 

Γ   00
𝜂

=
1

2
𝑔𝜂𝜈(𝜕0𝑔0𝜈 + 𝜕0𝑔𝜈0 − 𝜕𝜈𝑔00) = −

1

2
𝑔𝜂𝜈𝜕𝜈𝑔00, 

where the time derivatives vanish since the field was assumed to 

be static. Since the field is also assumed to be small, the metric 

deviates only a little from the Minkowski metric: 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 ,          |ℎ𝜇𝜈| ≪ 1         ⟹           𝑔𝜇𝜈 = 𝜂𝜇𝜈 − ℎ𝜇𝜈 . 

Thus, the spatial components of the equations of motion become 

𝜕2𝑥𝑖

𝜕𝜏2
≈
1

2
𝜂𝑖𝜈 (

𝑑𝑡

𝑑𝜏
)
2

𝜕𝜈ℎ00 =
1

2
(
𝑑𝑡

𝑑𝜏
)
2

∇𝑖ℎ00, 

the time component on the other hand 

𝜕2𝑡

𝜕𝜏2
≈
1

2
𝜂0𝜈 (

𝑑𝑡

𝑑𝜏
)
2

𝜕𝜈𝑔00 = 0, 

since the field is static and thus 𝜕0𝑔00 = 0. Thus, take the 

constant 𝜕𝑡/𝜕𝜏 to be 1, which yields 

𝜕2𝑥⃗

𝜕𝜏2
≈
1

2
∇ℎ00. 

Thus, for ℎ00 = −2𝜙𝑁 (thus 𝑔00 = −1 − 2𝜙𝑁) the Newtonian 

equation is recovered.  
 

3.3 Gravitational Redshift 
Consider two identical clocks that send out light at the same 

frequency 𝜈 = 1 Δ𝑡⁄ . If they are at rest (𝑑𝑥𝑖 = 0), the space-time 

interval between two ticks Δ𝑠 equals the time-interval: 

     Δ𝑠 = √−𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 = √−𝑔00(𝑥𝑖)𝑑𝑡𝑖 = Δ𝑡 

          ⟺     √−𝑔00(𝑥1)𝑑𝑡1 = √−𝑔00(𝑥2)𝑑𝑡2 

          ⟹    
𝜈2
𝜈1
=
𝑑𝑡1
𝑑𝑡2

=
√−𝑔00(𝑥2)

√−𝑔00(𝑥1)
. 

Calling 𝜈1 = 𝜈 and 𝜈2 = 𝜈 + Δ𝜈 and using 𝑔00 = −1 − 2𝜙, which 

was the result of 3.2 for week fields, yields 

Δ𝜈

𝜈
=
𝜈2 − 𝜈1
𝜈1

=
𝜈2
𝜈1
− 1 = √

𝑔00(𝑥2)

𝑔00(𝑥1)
− 1 = √

1 + 2𝜙(𝑥2)

1 + 2𝜙(𝑥1)
− 1

≈ (1 + 𝜙(𝑥2))(1 − 𝜙(𝑥1)) − 1 = 𝜙(𝑥2) − 𝜙(𝑥1) + 𝒪(𝜙
2)

≈ Δ𝜙. 



4 Tensors and Curvatures 
 

4.1 Tensors and the EEP 
The EEP can be rephrased as follows: 

 A physical equation holds in a general gravitational field, if 

 1. the equation is generally covariant (meaning the form is 

  preserved under a general coordinate transformation) and 

 2. the equation holds in the absence of gravity (meaning for 

  𝑔𝜇𝜈 = 𝜂𝜇𝜈 , Γ   𝜇𝜈
𝜆 = 0 special relativity holds locally). 

Such physical equations can be built out of tensors, which 

transform homogeneously under general coordinate 

transformations: 

𝑇𝜈1⋯𝜈𝑚
′𝜇1⋯𝜇𝑛(𝑥′) =

𝑑𝑥′𝜇1

𝑑𝑥𝜂1
⋯
𝑑𝑥′𝜇𝑛

𝑑𝑥𝜂𝑁
 
𝑑𝑥𝜅1

𝑑𝑥′𝜈1
⋯
𝑑𝑥𝜅𝑛

𝑑𝑥′𝜈𝑁
𝑇𝜅1⋯𝜅𝑚
𝜂1⋯𝜂𝑛(𝑥). 

 

4.2 Transformation of the Metric and the Connection 
THE METRIC: 

The metric does transform like a tensor under a transformation 

𝑥 → 𝑥′ (see definition from 3.1): 

𝑔𝜇𝜈
′ = 𝜂𝛼𝛽

𝑑𝜉𝛼

𝑑𝑥′𝜇
𝑑𝜉𝛽

𝑑𝑥′𝜈
= 𝜂𝛼𝛽

𝜕𝑥𝜂

𝜕𝑥′𝜇
𝜕𝑥𝜅

𝜕𝑥′𝜈
𝑑𝜉𝛼

𝑑𝑥𝜂
𝑑𝜉𝛽

𝑑𝑥𝜅
= 𝑔𝜂𝜅

𝜕𝑥𝜂

𝜕𝑥′𝜇
𝜕𝑥𝜅

𝜕𝑥′𝜈
. 

THE AFFINE CONNECTION: 

The affine connection does not transform like a tensor! Instead, 

the transformed affine connection reads 

Γ    𝜇𝜈
′𝜆 =

𝜕𝑥′𝜆

𝜕𝑥𝜌
𝜕𝑥𝜎

𝜕𝑥′𝜇
𝜕𝑥𝜏

𝜕𝑥′𝜈
Γ   𝜎𝜏
𝜌
+
𝜕𝑥′𝜆

𝜕𝑥𝜌
𝜕2𝑥𝜌

𝜕𝑥′𝜇𝜕𝑥′𝜈
. 

 

4.3 The Covariant Derivative 
Consider a vector 𝑉𝜇 . Under arbitrary coordinate 

transformation, 

𝜕𝜈𝑉𝜇 =
𝜕

𝜕𝑥𝜈
𝑉𝜇 ≔ 𝑉𝜇,𝜈  

is not a tensor: 

          𝑉𝜇
′ =

𝜕𝑥𝜎

𝜕𝑥′𝜇
𝑉𝜎  

          ⟹    
𝜕

𝜕𝑥′𝜈
𝑉𝜇
′ =

𝜕

𝜕𝑥′𝜈
𝜕𝑥𝜎

𝜕𝑥′𝜇
𝑉𝜎 =

𝜕𝑥𝜎

𝜕𝑥′𝜇
𝜕

𝜕𝑥′𝜈
𝑉𝜎 + (

𝜕

𝜕𝑥′𝜈
𝜕𝑥𝜎

𝜕𝑥′𝜇
) 𝑉𝜎  

                         =
𝜕𝑥𝜎

𝜕𝑥′𝜇
𝜕𝑥𝜏

𝜕𝑥′𝜈
𝜕

𝜕𝑥𝜏
𝑉𝜎 +

𝜕2𝑥𝜎

𝜕𝑥′𝜇𝜕𝑥′𝜈
𝑉𝜎 . 

This structure is very similar as for the affine connection. Thus, 

𝑉𝜇;𝜈 ≔ 𝑉𝜇,𝜈 − Γ   𝜇𝜈
𝜆 𝑉𝜆,          𝑉    ;𝜈

𝜇
≔ 𝑉    ,𝜈

𝜇
+ Γ   𝜆𝜈

𝜇
𝑉𝜆  

are tensors, since  

𝑉𝜇;𝜈
′ = 𝑉𝜇,𝜈

′ − Γ    𝜇𝜈
′𝜆 𝑉𝜆

′ = ⋯ =
𝜕𝑥𝜎

𝜕𝑥′𝜇
𝜕𝑥𝜏

𝜕𝑥′𝜈
𝑉𝜎;𝜏 . 

The covariant derivative of an rank-2 tensor then reads 

𝑇   𝜈;𝜆
𝜇

= 𝑇   𝜈,𝜆
𝜇

+ Γ   𝜆𝜅
𝜇
𝑇   𝜈
𝜅 − Γ   𝜈𝜆

𝜅 𝑇   𝜅
𝜇
, 

where 𝑇   𝜈,𝜆
𝜇

≔ 𝜕𝜆𝑇   𝜈
𝜇
. The covariant derivative acts as a linear 

operator, just as the ordinary derivative. 
 

4.4 Electro-Magnetism in Curved Space-Time 
GENERAL RECIPE: 

 1.  Find the appropriate special relativity equations, holding 

in the absence of gravity. 

 2. Replace 𝜂𝜇𝜈 → 𝑔𝜇𝜈  and ordinary by covariant derivatives. 

Then, the resulting equations also hold in the presence of a 

gravitational field. 

COVARIANT MAXWELL EQUATIONS: 

The covariant Maxwell equations read (compare with 2.2): 

𝐹       ;𝜇
𝜇𝜈

= −𝐽𝜈,          𝐹𝜇𝜈;𝜆 + 𝐹𝜆𝜇;𝜈 + 𝐹𝜈𝜆;𝜇 = 0. 

The force 4-vector stays the same: 

𝑓𝜇 = 𝑒𝐹   𝜈
𝜇 𝑑𝑥

𝜈

𝑑𝜏
. 

 

4.5 The Riemann Tensor and the Ricci Tensor 
RIEMANN TENSOR: 

The first (covariant) derivative of the metric, 𝑔𝜇𝜈;𝜆, ist of course 

a tensor, but one can show easily with the definition of the affine 

connection (which sits inside the covariant derivative) that 

𝑔𝜇𝜈;𝜆 = 0. 

It has been shown that the only tensor linear in the second order 

derivative of the metric is the Riemann tensor: 

𝑅   𝜇𝜈𝜌
𝜆 ≔ Γ   𝜇𝜈,𝜌

𝜆 − Γ   𝜇𝜌,𝜈
𝜆 + Γ   𝜇𝜈

𝜎 Γ   𝜌𝜎
𝜆 − Γ   𝜇𝜌

𝜎 Γ   𝜈𝜎
𝜆 , 

which also can be written as 

𝑅𝜆𝜇𝜈𝜌 =
. 1

2
(𝑔𝜆𝜈,𝜇,𝜌 − 𝑔𝜇𝜈,𝜆,𝜌 − 𝑔𝜆𝜌,𝜇,𝜈 + 𝑔𝜇𝜌,𝜆,𝜈) + + ++ + + + +

+ ++ + + ++ + + 𝑔𝜅𝜎(Γ   𝜈𝜆
𝜅 Γ   𝜇𝜌

𝜎 − Γ   𝜌𝜆
𝜅 Γ   𝜇𝜈

𝜎 ). 

Note, that the usual convention has an opposite overall sign! 

It has 44 = 256 components, but due to symmetries, only 20 are 

independent: 

 𝑅𝜆𝜇 𝜈𝜌 = 𝑅𝜈𝜌 𝜆𝜇  

 𝑅𝜆𝜇 𝜈𝜌 = −𝑅𝜇𝜆 𝜈𝜌 = −𝑅𝜆𝜇 𝜌𝜈  

 𝑅𝜆 𝜇𝜈𝜌 + 𝑅𝜆 𝜌𝜇𝜈 + 𝑅𝜆 𝜈𝜌𝜇 = 0             (first/algebraic B.I.) 

 𝑅𝜆𝜇 𝜈𝜌;𝜎 + 𝑅𝜆𝜇 𝜎𝜈;𝜌 + 𝑅𝜆𝜇 𝜌𝜎;𝜈 = 0    (second/differential B.I.) 

Here, B.I. is short-hand for Bianchi identity. One may check all 

this in the LICS, where Γ = 0. 

RICCI TENSOR AND RICCI SCALAR: 

The Ricci tensor is defined as 

𝑅𝜇𝜌 ≔ 𝑅   𝜇𝜆𝜌
𝜆 , 

the Ricci scalar as 

𝑅 ≔ 𝑔𝜇𝜈𝑅𝜇𝜈 = 𝑅  𝜇
𝜇
. 

The Ricci tensor is symmetric: 

𝑅𝜇𝜌 = 𝑅   𝜇𝜆𝜌
𝜆 = 𝑔𝜆𝜅𝑅𝜅𝜇𝜆𝜌 = 𝑔

𝜆𝜅𝑅𝜆𝜌𝜅𝜇 = 𝑅   𝜌𝜅𝜇
𝜅 = 𝑅𝜌𝜇 . 

Also, other contractions of the Riemann tensor can be given as 

the Ricci tensor, e.g. 

𝑅   𝜌𝜇𝜆
𝜆 = 𝑔𝜆𝜈𝑅𝜈𝜌𝜇𝜆 = 𝑔

𝜆𝜈𝑅𝜇𝜆𝜈𝜌 = −𝑔
𝜆𝜈𝑅𝜆𝜇𝜈𝜌 = −𝑅   𝜇𝜈𝜌

𝜈 = −𝑅𝜇𝜌. 

Finally, it holds that 
1

√𝑔
𝜖𝜆𝜇𝜈𝜌𝑅𝜆𝜇𝜈𝜌 = 0,          𝑔 ≔ −det 𝑔𝜇𝜈 . 

THE CONTRACTED BIANCHI IDENTITY: 

Using 𝑔     ;𝜎
𝜈𝜆 = 0 from the very top of 4.5, it follows that 

 𝑔𝜈𝜆𝑅𝜆𝜇𝜈𝜌;𝜎 = (𝑔
𝜈𝜆𝑅𝜆𝜇𝜈𝜌);𝜎

= 𝑅   𝜇𝜈𝜌;𝜎
𝜈 = 𝑅𝜇𝜌;𝜎     and 

 𝑔𝜇𝜌𝑅   𝜇𝜌𝜎;𝜆
𝜆 = 𝑔𝜇𝜌𝑔𝜆𝜅𝑅𝜅𝜇𝜌𝜎;𝜆 = −𝑔

𝜇𝜌𝑔𝜆𝜅𝑅𝜇𝜅𝜌𝜎;𝜆 

   = −𝑔𝜆𝜅𝑅   𝜅𝜌𝜎;𝜆
𝜌

= −𝑔𝜆𝜅𝑅𝜅𝜎;𝜆 = −𝑅   𝜎;𝜆
𝜆  

Thus, the following form of the second Bianchi identity yields 

   𝑅𝜆𝜇𝜈𝜌;𝜎 − 𝑅𝜆𝜇𝜈𝜎;𝜌 + 𝑅𝜆𝜇𝜌𝜎;𝜈 = 0 |𝑔𝜆𝜈 ⋅ 

 ⟺  𝑅𝜇𝜌;𝜎 − 𝑅𝜇𝜎;𝜌 + 𝑅   𝜇𝜌𝜎;𝜈
𝜈 = 0 |𝑔𝜇𝜌 ⋅ 

 ⟺  𝑅;𝜎 − 𝑅   𝜎;𝜌
𝜌

− 𝑅   𝜎;𝜆
𝜆 = 𝑅;𝜎 − 2𝑅   𝜎;𝜇

𝜇
= 0 

 ⟺  𝑅   𝜎;𝜇
𝜇

−
1

2
𝛿𝜎
𝜇
𝑅;𝜇 = (𝑅   𝜎

𝜇
−
1

2
𝛿𝜎
𝜇
𝑅)

;𝜇
= 0 |𝑔𝜈𝜎 ⋅ 

      ⟺       (𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅)

;𝜇
= 0  

 

4.6 Covariant Derivative along a Curve 
The covariant derivative of a vector 𝑠𝜇(𝜏) along a curve 𝑥𝜇(𝜏) is  

𝐷𝑠𝜇

𝐷𝜏
≔
𝑑𝑠𝜇

𝑑𝜏
− Γ   𝜇𝜈

𝜆
𝑑𝑥𝜈

𝑑𝜏
𝑠𝜆,  

since 𝐷𝑠𝜇 𝐷𝜏⁄  behaves like a tensor under coordinate 

transformation, as can be shown straight forwardly by plugging 

in the transformation properties of 𝑠𝜇
′  and Γ     𝜇𝜈

′𝜆 . In the absence 

of other forces, for the LICS (Γ = 𝑑𝑠 𝑑𝜏⁄ = 0) holds that  
𝐷𝑠𝜇

𝑑𝜏
= 0, 

and since 𝐷𝑠𝜇 𝑑𝜏⁄  is invariant this also holds in any other frame. 
 



4.7 Parallel Transport 
Say that any vector 𝑠𝜇  is parallel transported if it obeys 

𝐷𝑠𝜇

𝐷𝜏
= 0    ⟺     

𝑑𝑠𝜇

𝑑𝜏
= Γ   𝜇𝜈

𝜆
𝑑𝑥𝜈

𝑑𝜏
𝑠𝜆 . 

Define the change of the vector 𝑠𝜇  after being parallel 

transported around a closed loop 𝒞 (parametrized as 𝑥𝜇(𝜏)) as 

Δ𝑠𝜇(𝒞) ≔ 𝑠𝜇(𝜏end) − 𝑠𝜇(𝜏start). 

Consider an arbitrary area 𝒜 bounding 𝒞 and break it up into 

𝑁 ≫ 1 “tiles” 𝛿𝒜𝑛 with borders 𝛿𝒞𝑛. Thus it follows 

Δ𝑠𝜇(𝒞) = ∑Δ𝑠𝜇(𝒞𝑛)

𝑁

𝑛=1

. 

Now, 𝑠𝜇(𝒞𝑛) needs to be evaluated. Starting from some point 

𝑃 = 𝑥𝜇(𝜏start) at some other point 𝑥𝜇(𝜏) the vector 𝑠𝜇  reads 

𝑠𝜇(𝜏) = 𝑠𝜇(𝑃) + ∫ 𝑑𝜏 Γ   𝜇𝜈
𝜆
𝑑𝑥𝜈

𝑑𝜏
𝑠𝜆

𝜏

𝜏start

, 

which is derived from the condition 𝐷𝑠𝜇 𝐷𝜏⁄ = 0. Since the curve 

𝒞𝑛 is small, the integrand can be Taylor expanded about 𝑃: 

Γ   𝜇𝜈
𝜆 (𝜏) ≈ Γ   𝜇𝜈

𝜆 (𝑃) + 𝜕𝜌Γ   𝜇𝜈
𝜆 (𝑃)(𝑥𝜌(𝜏) − 𝑥𝜌(𝑃)), 

𝑠𝜆(𝜏) ≈ 𝑠𝜆(𝑃) + Γ   𝜆𝜌
𝜎 (𝑃)𝑠𝜎(𝑃)(𝑥

𝜌(𝜏) − 𝑥𝜌(𝑃)).   

This yields up to terms of first order in 𝑥𝜈(𝜏) − 𝑥𝜈(𝑃) 

𝑠𝜇(𝜏)

= 𝑠𝜇(𝑃) + Γ   𝜇𝜈
𝜆 (𝑃)𝑠𝜆(𝑃)∫ 𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏

𝜏

𝜏start

++(Γ   𝜇𝜈
𝜆 (𝑃)Γ   𝜆𝜌

𝜎 (𝑃) + 𝜕𝜌Γ   𝜇𝜈
𝜎 (𝑃)) 𝑠𝜎(𝑃)

+ ∫ 𝑑𝜏 (𝑥𝜌(𝜏) − 𝑥𝜌(𝑃))
𝑑𝑥𝜈

𝑑𝜏

𝜏

𝜏start

. 

By definition it is Δ𝑠𝜇(𝒞𝑛) = 𝑠𝜇(𝑡end) − 𝑠𝜇(𝑃). For 𝜏 = 𝜏end the 

integrals become closed loop integrals for which ∮𝑑𝑥𝜈  is always 

zero. Obviously, this holds for ∮ 𝑥𝜌(𝑃) 𝑑𝑥𝜈 ∼ ∮𝑑𝑥𝜈 . Thus, 

Δ𝑠𝜇 = (Γ   𝜇𝜈
𝜆 (𝑃)Γ   𝜆𝜌

𝜎 (𝑃) + 𝜕𝜌Γ   𝜇𝜈
𝜎 (𝑃)) 𝑠𝜎(𝑃)∮ 𝑑𝑥𝜈𝑥𝜌

𝒞𝑛

. 

𝜈 and 𝜌, being dummy indices, can be interchanged. Using 

0 = ∮𝑑(𝑥𝜈𝑥𝜌) = ∮(𝑑𝑥𝜈𝑥𝜌 + 𝑑𝑥𝜌𝑥𝜈) 

⟺∮𝑑𝑥𝜈𝑥𝜌 = −∮𝑑𝑥𝜌𝑥𝜈 

yields 

Δ𝑠𝜇 =
1

2
(Δ𝑠𝜇 + Δ𝑠𝜇(𝜌 ↔ 𝜈))

=
1

2
(Γ   𝜇𝜈

𝜆 Γ   𝜆𝜌
𝜎 + 𝜕𝜌Γ   𝜇𝜈

𝜎 − Γ   𝜇𝜌
𝜆 Γ   𝜆𝜈

𝜎 − 𝜕𝜈Γ   𝜇𝜌
𝜎 )𝑠𝜎|

𝑃
∮ 𝑑𝑥𝜈𝑥𝜌

𝒞𝑛

 

and thus, using the definition of the Riemann tensor from 4.5, 

Δ𝑠𝜇(𝒞𝑛) =
1

2
𝑅   𝜇𝜈𝜌
𝜎 (𝑃)𝑠𝜎(𝑃)∮ 𝑑𝑥𝜈𝑥𝜌

𝒞𝑛

.  

Evidently, 𝑠𝜇  changes if and only if 𝑅   𝜇𝜈𝜌
𝜎 (𝑃) ≠ 0. Thus, the 

Riemann tensor indicates the presence of a genuine gravitational 

field instead of mere exotic coordinates (instead of the metric, 

which can also for a plane manifold look ugly in strange 

coordinates). 

It can be proofed that for the metric 𝑔𝜇𝜈  to be equivalent to the 

constant Minkowski metric globally (meaning there are 

coordinates such that 𝑔𝜇𝜈 = 𝜂𝜇𝜈  globally), the conditions are 

 1. 𝑅   𝜇𝜈𝜌
𝜆 [𝑔(𝑥)] = 0 ∀𝑥 

 2. at some point 𝑥 the matrix 𝑔𝜇𝜈(𝑥) has three positive and 

one negative eigenvalues.  

 
 
 
 

4.8 Tensor Densities 
DEFINITION: 

A tensor density is an object which transforms almost like a 

tensor, specifically 

𝒯⋯
′⋯ = det𝑤 [

𝜕𝑥′𝜇

𝜕𝑥𝜈
] ⋅
𝜕𝑥′⋯

𝜕𝑥⋯
⋯
𝜕𝑥⋯

𝜕𝑥′⋯
⋯𝒯⋯

⋯, 

where the ⋯ stand for all the indices. The determinant is the 

Jacobian determinant and 𝑤 is called the weight of the tensor 

density. 

METRIX DETERMINANT: 

The determinant of the metric 𝑔 = −det 𝑔𝜇𝜈  is a scalar density 

of weight 𝑤 = −2, since (using det 𝐴𝑇 = det 𝐴) 

𝑔′ = −det
𝜕𝑥𝜆

𝜕𝑥′𝜇
𝑔𝜆𝜌

𝜕𝑥𝜌

𝜕𝑥′𝜈
= det2

𝜕𝑥𝜆

𝜕𝑥′𝜇
𝑔 = det−2

𝜕𝑥′𝜇

𝜕𝑥𝜆
𝑔. 

LEVI-CIVITA SYMBOL: 

The Levi-Civita symbol is a tensor density with weight 𝑤 = −1. 

A tensor is a tensor density with 𝑤 = 0.  It holds 

𝜖𝜆𝜇𝜈𝜌⏟  
𝑤=−1

𝑅𝜆𝜇𝜈𝜌⏟  
𝑤=0

1 √𝑔⁄⏟  
𝑤=1

= 0⏟
𝑤=0

. 

DELTA-FUNCTION: 

√𝑔 𝑑4𝑥 is a scalar volume element and thus 𝛿4(𝑥)/√𝑔 is a scalar 

density because 

∫𝑑4𝑥 √𝑔
1

√𝑔
𝛿4(𝑥)𝑓(𝑥) = 𝑓(0). 

 

4.9 Energy-Momentum Tensor in General Relativity 
For the Special Relativity case, the energy-momentum tensor 

was given in 2.3 and it obeys 

𝑇̂       ,𝜇
𝜇𝜈

|
SR
= 0. 

Following the recipe in 4.4, there should be a tensor 𝑇𝜇𝜈  with 

𝑇       ;𝜇
𝜇𝜈

= 0, 

which reduces to 𝑇̂𝜇𝜈  in a LICS. Similar to 2.3, the tensor reads 

𝑇𝜇𝜈(𝑥) =
1

√𝑔
∑𝑚𝑛∫𝑑𝑥𝑛

𝜇 𝑑𝑥𝑛
𝜈

𝑑𝜏𝑛
𝛿(𝑥 − 𝑥𝑛)

𝑛

. 



5 Gravitational Field Equations 
 

5.1 Derivation of the Einstein Equations 
ANSATZ: 

The electro-magnetic fields do not carry charges themselves 

which makes the Maxwell equations linear. However, 

gravitational fields do carry energy-momentum themselves and 

thus the differential equations are by necessity non-linear. 

The Einstein Equations can be searched for being guided by the 

following principles: the EEP and the Newtonian limit.  

In 3.2 it was found that 𝑔00 = −1 − 2𝜙. Also, 𝑇00 corresponds to 

the energy density. Thus, the Poisson equation ∇2𝜙 = 4𝜋𝐺𝑁𝜌mass 

may be rewritten as 

∇2𝑔00 = −8𝜋𝐺𝑁𝑇00. 

This leads oneself to the Ansatz 

𝐺𝜇𝜈 = −8𝜋𝐺𝑁𝑇𝜇𝜈 , 

where 𝐺𝜇𝜈  must be a tensor, which 

 1. involves a second order derivative of the metric linearly, 

 2. is symmetric (since 𝑇𝜇𝜈  is symmetric), 

 3. is conserved, i.e. 𝐺     ;𝜇
𝜇𝜈

= 0 (since 𝑇𝜇𝜈  is conserved) and 

 4. obeys 𝐺00 ≈ ∇
2𝑔00 for weak static fields. 

CONSTRUCTING 𝑮𝝁𝝂: 

The only tensor available is the Riemann tensor and since 𝐺𝜇𝜈  

has only two indices, it has to be built out of 𝑅𝜇𝜈  and 𝑅: 

𝐺𝜇𝜈 = 𝑐1𝑅𝜇𝜈 + 𝑐2𝑔𝜇𝜈𝑅. 

This already fulfills condition 2. The 3. condition requires 

𝐺     ;𝜇
𝜇𝜈

= (𝑐1𝑅
𝜇𝜈 + 𝑐2𝑔

𝜇𝜈𝑅);𝜇 = 0. 

Comparing this to the contracted Bianchi identity in 4.5 yields 

that 𝐺𝜇𝜈  must be of the form 

𝐺𝜇𝜈 = 𝑐 (𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅). 

CALCULATE THE FACTOR 𝒄: 

𝑐 follows out of the 4. condition. Consider a non-relativistic 

system, for which |𝑇𝑖𝑗| ≪ |𝑇00| (low velocities). In this case, 

𝐺𝑖𝑗 = −8𝜋𝐺𝑁𝑇𝑖𝑗 ≈ 0    ⟺      𝑅𝑖𝑗 ≈
1

2
𝑔𝑖𝑗𝑅. 

Weak fields (see condition 4) implies 𝑔𝜇𝜈 ≈ 𝜂𝜇𝜈  and therefore 

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 ≈ ∑ 𝑅𝑖𝑖𝑖 − 𝑅00 =
1

2
∑ 𝜂𝑖𝑖𝑖 𝑅 − 𝑅00 =

3

2
𝑅 − 𝑅00  

⟺      𝑅 = 2𝑅00, 

recalling the convention 𝜂 = diag(−1, 1, 1, 1). Thus, 

𝐺00 = 𝑐 (𝑅00 −
1

2
𝑔00𝑅) ≈ 2𝑐𝑅00 ≈ 2𝑐(∑ 𝑅𝑖0𝑖0𝑖 − 𝑅0000).  

For a weak static field in a LICS, it is Γ ≈ 0 and therefore,  

𝑅𝜆𝜇𝜈𝜌 ≈
1

2
(
𝜕2𝑔𝜆𝜈
𝜕𝑥𝜇𝜕𝑥𝜌

−
𝜕2𝑔𝜇𝜈

𝜕𝑥𝜆𝜕𝑥𝜌
−
𝜕2𝑔𝜆𝜌

𝜕𝑥𝜇𝜕𝑥𝜈
+
𝜕2𝑔𝜇𝜌

𝜕𝑥𝜆𝜕𝑥𝜈
) 

⟹     𝑅0000 ≈ 0,     𝑅𝑖0𝑗0 ≈
1

2
 
𝜕2𝑔00
𝜕𝑥𝑖𝜕𝑥𝑗

. 

The latter follows directly from the static field, which makes all 

time derivatives vanish.  Plugging those results in yields 

𝐺00 ≈ 2𝑐∑
1

2
 
𝜕2𝑔00
𝜕𝑥𝑖𝜕𝑥𝑗

𝑖

= 𝑐∇2𝑔00. 

Comparing this to condition 4 directly yields 𝑐 = 1.  

THE EINSTEIN EQUATIONS: 

Thus, the Einstein Field Equations (1915) read 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = −8𝜋𝐺𝑁𝑇𝜇𝜈 ,  

where 

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 

is called the Einstein tensor. 

 
 
 

5.2 Remarks to the Einstein Equations 
CURVATURE IN VACUUM: 

Consider a universe, where some areas are not filled with 

matter, but are in vacuum. In those areas holds 𝑇𝜇𝜈 = 0 and thus 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = 0                                                                             |𝑔

𝜇𝜈 ⋅ 

⟺      𝑅 −
1

2
𝑅 = 0    ⟺      𝑅 = 0    ⟹      𝑅𝜇𝜈 = 0. 

Where 𝑅 = 0 ⟹ 𝑅𝜇𝜈 = 0 follows from the Einstein equations for 

𝑇𝜇𝜈 = 0. In one or two spatial dimensions it also holds 𝑅𝜇𝜈 =

0 ⟹ 𝑅𝜇𝜈𝜆𝜌 = 0, i.e. space is never curved in vacuum areas. 

However, for three spatial dimensions this is not true and 𝑅𝜇𝜈𝜆𝜌  

can be non-zero also in vacuum areas. 

RICCI SCALAR AND ENERGY-MOMENTUM TENSOR: 

Contracting the Einstein equation with 𝑔𝜇𝜈  yields 

𝑅 − 2𝑅 = −8𝜋𝐺𝑁𝑇   𝜇
𝜇
    ⟺      𝑅 = 8𝜋𝐺𝑁𝑇    𝜇

𝜇
. 

Thus, the Einstein equations may be given as 

𝑅𝜇𝜈 = −8𝜋𝐺𝑁 (𝑇𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑇   𝜆

𝜆 ). 

COSMOLOGICAL CONSTANT: 

Adding a term −Λ𝑔𝜇𝜈  to 𝐺𝜇𝜈 , where Λ is a constant, yields 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 − Λ𝑔𝜇𝜈 = −8𝜋𝐺𝑁𝑇𝜇𝜈 . 

Actually, this contradicts condition 4 in 5.1, however, Λ might be 

small enough so that its impact on the Newtonian limit is 

negligible. In 1999 it was discovered that Λ ∼ 10−52 m−2. 

 
 

5.3 Classical Tests of General Relativity 
DEFLECTION OF THE LIGHT BY THE SUN: 

At a solar eclipse in 1919, the apparent 

angle between two stars 𝜑 was 

measured, where the light of one of the stars passed the sun in a 

short distance (the solar eclipse was necessary to shield the 

sunlight and be able to see the starlight). Half a year later, the 

sun moved towards the other side of the earth and the angle was 

measured again (without needing the moon). General Relativity 

predicts that those measured angles differ by 

Δ𝜑 =
4𝐺𝑁𝑀⊙
𝑅⊙

≈ 1,75 arcsec ≈ 4,86 ⋅ 10−4 degrees. 

Assigning a mass 𝑚 = 𝐸/𝑐2 to the photons and applying 

Newton’s theory only gives half of this value. Two independent 

groups conducted this experiment in 1919 and came out with 

Δ𝜑 = (1,98 ± 0,12) arcsec     and     Δ𝜑 = (1,61 ± 0,31) arcsec. 

Later experiments of those type confirmed General Relativity to 

a higher precision. 

ADVANCE OF THE PERIHELION OF MERCURY: 

As known in astronomy for a long time and in contradiction to 

Newton’s theory, the perihelion of mercury precesses around 

the sun by an angular velocity of 

𝜔 = (43,11 ± 0,45)
arcsec

century
. 

General Relativity yields the theoretical value of 

𝜔 =
6𝜋𝐺𝑁𝑀⊙
(1 − 𝜀2)𝑎

= 43,04
arcsec

century
, 

where 𝜀 is the excentricity and 𝑎 the aphelion distance. 

 
 
 
 
 
 
 
 
 



5.4 Gauge Fixing 
ELECTRO-DYNAMICS: 

The Maxwell equations for a vector potential 𝐴𝛼 read 

☐𝐴𝛼 − 𝜕𝛼𝜕𝛽𝐴
𝛽 = −𝐽𝛼 . 

Those are four equations for four unknowns 𝐴𝛼 , however the 

effective number of equations is only three, since the following 

identity always holds: 

𝜕𝛼(☐𝐴𝛼 − 𝜕𝛼𝜕𝛽𝐴
𝛽) = ☐𝜕𝛼𝐴𝛼 −☐𝜕𝛽𝐴

𝛽 = 0. 

This is, by the way, just current conservation 𝜕𝛼𝐽
𝛼 = 0. One 

degree of freedom remains undetermined and this corresponds 

to the gauge invariance 

𝐴𝛼
′  (𝑥) = 𝐴𝛼(𝑥) + 𝜕𝛼Λ(𝑥), 

which is also a solution to the Maxwell equations for an 

arbitrary Λ(𝑥), since 

☐∂𝛼Λ − 𝜕𝛼𝜕𝛽𝜕
𝛽Λ = ☐∂𝛼Λ − 𝜕𝛼☐Λ = 0. 

One may choose an arbitrary gauge condition as a fourth 

equation, for example the Lorentz gauge 

𝜕𝛼𝐴
′𝛼 = 0, 

which is reached by the gauge transformation 

𝐴𝛼
′ = 𝐴𝛼 + 𝜕𝛼Λ𝐿 ,     ☐Λ𝐿 = −𝜕𝛼𝐴

𝛼 . 

The latter equation can be solved for Λ𝐿  and with this Λ𝐿  the 

Maxwell equations become 

☐𝐴𝛼
′ − (𝜕𝛼𝜕𝛽𝐴

𝛽 + 𝜕𝛼𝜕𝛽𝜕
𝛽Λ𝐿) = ☐𝐴𝛼

′ =
!
 − 𝐽𝛼 . 

EINSTEIN EQUATIONS: 

Solving the Einstein equation means solving for 𝑔𝜇𝜈 , hence there 

are ten unknowns. There are also ten equations, however, as for 

the electro-dynamic case, differentiation w.r.t 𝜇 yields 𝑇      ;𝜇
𝜇𝜈

= 0 

due to energy-momentum conservation (4.9) and 𝐺     ;𝜇
𝜇𝜈

= 0 due 

to the contracted Bianchi identity (4.5). So, effectively, there are 

only 10 − 4 = 6 equations left. 

As it turns out, the 𝑔𝜇𝜈(𝑥)-fields are determined by the Einstein 

equations only up to arbitray coordinate transformations 

𝑥′𝜇(𝑥) = 𝑓𝜇(𝑥), 

equivalent to 𝐴𝛼
′ = 𝐴𝛼 + 𝜕𝛼Λ in the electro-dynamic case. As was 

the Lorentz gauge, here the so-called Harmonic gauge 

Γ′𝜆 ≔ 𝑔′𝜇𝜈 Γ     𝜇𝜈
′𝜆 = 0  

is an elegant gauge condition. For a standard Minkowski 

coordinate system, this holds automatically, so for a weak 

gravitational field, the harmonic coordinate system is nearly 

Minkowskian. 

WHY THIS GAUGE IS CALLED HARMONIC: 

In mathematics, a function 𝑓(𝑥), 𝑥 ∈ ℝ𝑛, is called harmonic, if it 

obeys the Laplace equation 

Δ𝑓(𝑥) = 0. 

The four-vector generalization of the Laplacian is ☐ = 𝜕𝜇𝜕
𝜇 , 

whose covariant pendant is, applied to a function 𝑓, given by 

𝑔𝜇𝜈𝑓;𝜇;𝜈 . Using those generalization, one may call 𝑓 harmonic if 

0 =
!
𝑔𝜇𝜈𝑓;𝜇;𝜈 = 𝑔

𝜇𝜈𝑓,𝜇;𝜈 = 𝑔
𝜇𝜈(𝑓,𝜇,𝜈 − Γ   𝜇𝜈

𝜆 𝑓,𝜆) = ☐𝑓 − Γ
𝜆𝑓,𝜆. 

Now, consider 𝑓 to be 𝑥𝛼 and use ☐𝑥𝛼 = 𝜕𝜈𝜕𝜈𝑥
𝛼 = 𝜕𝜈𝛿𝜈

𝛼 = 0. 

Thus, the coordinates 𝑥𝛼 are harmonic, if 

𝑔𝜇𝜈𝑥   ;𝜇;𝜈
𝛼 = 0     ⟺      Γ𝜆 = 0. 

Note, that 𝑓 was not a vector, thus one can take only the 𝛼-

component of 𝑥𝛼 to equal 𝑓, which is neither a scalar nor a 

vector. Thus, this condition is not a tensor equation. 

 
 
 
 
 
 
 

5.5 Einstein-Equation from Variational Principle 
Let’s postulate an action 𝐼 which can be decomposed into a 

matter and a gravitational part, 

𝐼 = 𝐼𝑀 + 𝐼𝐺 . 

GRAVITATIONAL PART: 

The action should be a scalar, thus an educated guess is 

𝐼𝐺 = −
1

16𝜋𝐺
∫𝑑4𝑥 √𝑔𝑅. 

To calculate the variation 𝛿𝐼𝐺 , consider 

𝛿(√𝑔𝑅) = 𝛿(√𝑔𝑔𝜇𝜈𝑅𝜇𝜈)

= 𝑔𝜇𝜈𝑅𝜇𝜈𝛿√𝑔 + √𝑔𝑅𝜇𝜈𝛿𝑔
𝜇𝜈 +√𝑔𝑔𝜇𝜈𝛿𝑅𝜇𝜈. 

FIRST TERM: For a matrix 𝐴 with 𝑎 ≔ det 𝐴, consider 

𝑎−1𝛿𝑎 = 𝛿 ln 𝑎 = 𝛿 ln det 𝐴 = ln det(𝐴 + 𝛿𝐴) − ln det 𝐴

= ln det(𝐴 + 𝛿𝐴) det 𝐴⁄ = ln det(𝐴−1(𝐴 + 𝛿𝐴))

= ln det(1 + 𝐴−1𝛿𝐴) ≈ ln(1 + Tr 𝐴−1𝛿𝐴) ≈ Tr 𝐴−1𝛿𝐴. 

Here, it was used that 𝐴−1𝛿𝐴 ≪ 1. Analogous, it holds that 
1

𝑔
𝛿𝑔 = 𝑔𝜇𝜈𝛿𝑔𝜇𝜈     ⟺      𝛿√𝑔 =

𝛿𝑔

2√𝑔
=
1

2
√𝑔𝑔𝜇𝜈𝛿𝑔𝜇𝜈 . 

SECOND TERM: Note that 𝑔𝜅𝜇𝑔𝜇𝜈 = 𝛿𝜈
𝜅 . Variation yields 

𝑔𝜇𝜈𝛿𝑔
𝜅𝜇 + 𝑔𝜅𝜇𝛿𝑔𝜇𝜈 = 0          |⋅ 𝑔

𝜇𝜌 

⟺      𝛿𝑔𝜅𝜌 = −𝑔𝜈𝜌𝑔𝜅𝜇𝛿𝑔𝜇𝜈 . 

THIRD TERM: The third term turns out to vanish after 

integration with 𝑑4𝑥. 

ALL TOGETHER: Thus, what remains is 

𝛿𝐼𝐺 = −
1

16𝜋𝐺
∫𝑑4𝑥√𝑔 (

1

2
𝑔𝜇𝜈𝑅 − 𝑅𝜇𝜈) 𝛿𝑔𝜇𝜈 . 

MATTER PART: 

The variation of the matter part can be given as 

𝛿𝐼𝑀 =
1

2
∫𝑑4𝑥 √𝑔𝑇𝜇𝜈𝛿𝑔𝜇𝜈 , 

which is a scalar, since 𝑑4𝑥 √𝑔 with 𝑔 ≔ −det 𝑔𝜇𝜈  is a scalar 

volume element and 𝑅 is the Ricci scalar.  

ALL TOGETHER: 

Thus, from the variation principle, the condition for a extremal 

total action reads 

−
1

16𝜋𝐺
(
1

2
𝑔𝜇𝜈𝑅 − 𝑅𝜇𝜈) +

1

2
𝑇𝜇𝜈 = 0, 

which is just equivalent to the Einstein equations. 



6 The Schwarzschild Solution 
 

6.1 Standard Form of the Metric 
ASSUMPTIONS: 

The Schwarzschild solution is a solution for a static, isotropic 

gravitational field, i.e. the field of a point mass. Thus, the metric 

should be independent of 𝑡 and only depend on rotational 

invariants, which are 

𝑥⃗ ⋅ 𝑥⃗,     𝑥⃗ ⋅ 𝑑𝑥⃗,     𝑑𝑥⃗ ⋅ 𝑑𝑥⃗. 

Thus, the most general form of a spatially isotropic metric reads 

𝑑𝑠2 = −𝐴 𝑑𝑡2 + 𝐵 𝑑𝑡 𝑥⃗ 𝑑𝑥⃗ + 𝐶(𝑥⃗ 𝑑𝑥⃗)2 + 𝐷 𝑑𝑥⃗2, 

where 𝐴, 𝐵, 𝐶, 𝐷 are arbitrary function of 𝑟 only. 

DERIVE THE STANDARDFORM OF THE METRIC: 

Adopting spherical coordinates 𝑥1 = 𝑟 sin 𝜃 cos𝜙 , 𝑥2 =

𝑟 sin 𝜃 sin𝜙 , 𝑥3 = 𝑟 cos 𝜃 yields after some calculation 

𝑥⃗2 = 𝑟2,     𝑥⃗ 𝑑𝑥⃗ = 𝑟 𝑑𝑟,     𝑑𝑥⃗2 = 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃 𝑑𝜙2. 

Plugging this into the 𝑑𝑠2-formula and properly redefining 

𝐴, 𝐵, 𝐶, 𝐷 (e.g. absorb factors of 𝑟, 𝑟2 into them) yields 

𝑑𝑠2 = −𝐴 𝑑𝑡2 + 𝐵 𝑑𝑡 𝑑𝑟 + 𝐶 𝑑𝑟2 + 𝐷(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2). 

We now introduce new coordinates 𝑡′ = 𝑡, 𝑟′2 = 𝐷(𝑟), 𝜃′ =

𝜃, 𝜙′ = 𝜙 and again redefine 𝐴, 𝐵, 𝐶 (they are now functions 

of 𝑟′) such that 

𝑑𝑠2 = −𝐴 𝑑𝑡2 + 𝐵 𝑑𝑡 𝑑𝑟′ + 𝐶 𝑑𝑟′2 + 𝑟′2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2). 

Let us also introduce a new timelike coordinate 𝑡′, defined by 

          𝑑𝑡′ = Φ(𝐴 𝑑𝑡 −
1

2
𝐵 𝑑𝑟′) 

    ⟺      𝐴 𝑑𝑡2 − 𝐵 𝑑𝑡 𝑑𝑟′ =
1

𝐴Φ2
𝑑𝑡′2 −

𝐵

4𝐴
𝑑𝑟′2, 

where Φ(𝑡, 𝑟′) is an integrating factor. The latter equation was 

obtained after squaring the former one. Defining new function 

𝐴′ = 1/𝐴Φ2 and 𝐵′ = 𝐶 + 𝐵/4𝐴 and omit all dashes yields 

𝑑𝑠2 = −𝐴 𝑑𝑡2 + 𝐵 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2).  
 

6.2 Specific Form of the Metric 
EINSTEIN EQUATIONS AND BOUNDARY CONDITIONS: 

In vacuum, outside of the point mass, it is 𝑇𝜇𝜈 = 0 and according 

to 5.2 the Einstein equations read simply 

𝑅𝜇𝜈 = 0. 

The boundary conditions read 

lim
𝑟→∞

𝐴(𝑟) = lim
𝑟→∞

𝐵(𝑟) = 1, 

since for 𝐴 = 𝐵 = 1 the Minkowski metric (in spherical 

coordinates) reads, as it should far away from the point mass. 

FIND 𝑨(𝒓) AND 𝑩(𝒓): 

From the boxed equation above, one can read out the metric 

𝑔𝜇𝜈 = diag(−𝐴, 𝐵, 𝑟
2, 𝑟2 sin2 𝜃) 

and thus, calculate the affine connection thus the Ricci tensor 

(see Hobson p. 200 for results). As a result, it turns out that 

𝑅00
𝐴
+
𝑅11
𝐵
= −

1

𝑟𝐵
(
𝐴′

𝐴
+
𝐵′

𝐵
) =

!
0, 

which must equal zero, since 𝑅𝜇𝜈 = 0 and thus 𝑅00 = 𝑅11 = 0. 

This is equivalent to 

⟺      0 = 𝐴′𝐵 + 𝐴𝐵′ = (𝐴𝐵)′     ⟺      𝐴𝐵 = const. = 1 

The constant must be 1 to obey the boundary conditions. 

Plugging in this result 𝐵 = 1/𝐴 into the 𝑅22 component yields 

𝑅22 = 𝐴 − 1 + 𝑟𝐴
′ = −1 + (𝑟𝐴)′ =

!
0    ⟺      𝐴 = 1 +

const.

𝑟
. 

Note, that we found 

−𝐴 = 𝑔00 = −1 − 2𝜙𝑁 = −1 + 2𝐺𝑀 𝑟⁄  

as a Newtonian limit in 3.2. Apparently, the constant is −2𝐺𝑀. 

Altogether, the Schwarzschild solution (1916) reads 

𝑑𝑠2 = −(1 −
2𝐺𝑀

𝑟
)𝑑𝑡2 +

1

1 −
2𝐺𝑀
𝑟

𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2).  

 

6.3 Singularities and the Schwarzschild Radius 
BIRKHOFFS THEOREM: 

Similar to Newtons theory, outside of a spherical body the 

metric is the same as for a point mass equal to the total mass of 

the body. 

SINGULARITY AT THE SCHWARZSCHILD RADIUS: 

Apparently, there is a singularity in the metric at the 

Schwarzschild radius 

𝑟𝑆 = 2𝐺𝑀 =
SI 2𝐺𝑀

𝑐2
≈ 2,95 km ⋅

𝑀

𝑀⊙
,     𝑀⊙ = mass of sun. 

First note, that for the sun it holds 𝑅⊙ > 𝑟𝑆, thus at 𝑟 = 𝑟𝑆 the 

Schwarzschild matric is not applicable anyway. However, also 

for compact objects with a radius 𝑅 < 𝑟𝑆, the local physical 

quantities (e.g. Riemann, Ricci tensor) are perfectly well 

behaved also around and at 𝑟𝑆. That is, 𝑅𝜇𝜈(𝑟𝑆) = 0 as it should. 

For example, one finds (Hobson, p. 200), using 𝐵 = 1/𝐴, 

𝑅22 = 𝐴 − 1 + 𝑟𝐴
′ = 1 − 2𝐺𝑀 𝑟⁄ − 1 + 𝑟 2𝐺𝑀 𝑟2⁄ = 0, 

which obviously holds for any 𝑟 ≠ 0. That is, the apparent 

singularity at 𝑟 = 𝑟𝑆 is only a coordinate singularity and can be 

transformed away by an appropriate coordinate transformation. 

SINGULARITY AT 𝒓 = 𝟎: 

In contrast to 𝑟 = 𝑟𝑆, the singularity at 𝑟 = 0 is real and cannot 

be get rid of by changing coordinates. The curvature at 𝑟 = 0 is 

infinite. 

GLOBAL SIGNIFICANCE OF THE SCHWARZSCHILD RADIUS: 

Although locally everything is well behaved at 𝑟𝑆, globally 𝑟𝑆 is 

special. Using 6.2 and 𝑑𝜏2 = −𝑑𝑠2, one finds that 

−𝑑𝑠2 = 𝑑𝜏2 = {

𝑑𝑡2 − 𝑑𝑟2 +⋯,                      𝑟 → ∞
(pos)𝑑𝑡2 + (neg)𝑑𝑟2 +⋯ , 𝑟 > 𝑟𝑆
(neg)𝑑𝑡2 + (pos)𝑑𝑟2 +⋯ , 𝑟 < 𝑟𝑆

, 

where (pos) means that this prefactor is positive. In the end, this 

is the reason, why nothing can escape the Schwarzschild radius. 

HAWKING TEMPERATURE: 

However, because of quantum effects, it is not true that nothing 

escapes the Schwarzschild radius or a black hole. A black hole is 

an almost perfect black body with the temperature, called 

Hawking temperature 𝑇𝐻  given by 

𝑘𝐵𝑇𝐻 = ℏ𝑐
3 8𝜋𝐺𝑀⁄ ≈ 10−7 K ⋅ 𝑀⊙ 𝑀⁄ . 

 

6.4 Gullstrand–Painlevé Coordinates 
Change the Schwarzschild coordinates (𝑡, 𝑟, 𝜃, 𝜙) to (𝑇, 𝑟, 𝜃, 𝜙), 

where 

𝑇 = 𝑡 + 4𝐺𝑀(√
𝑟

2𝐺𝑀
+
1

2
ln |
√𝑟 2𝐺𝑀⁄ − 1

√𝑟 2𝐺𝑀⁄ + 1
|). 

After transformation, the metric in those new coordinates reads 

𝑑𝑠2 = −𝑑𝑇2 + (𝑑𝑟 + √2𝐺𝑀 𝑟⁄ 𝑑𝑇)
2

+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜙2), 

which apparently is non-diagonal, but without any singularities 

at 𝑟 = 2𝐺𝑀. In those coordinates, the so called Kretschmann 

scalar reads 

𝐾 ≔ 𝑅𝜇𝜈𝜌𝜎𝑅
𝜇𝜈𝜌𝜎 = 12

(2𝐺𝑀)2

𝑟6
=
12

𝑟𝑠
(
𝑟𝑠
𝑟
)
6

, 

however, being a scalar, it is coordinate independent. Note also, 

that the singularity 𝑟 = 0 appears again in 𝐾.  
 

6.5 Generalization: The Kerr Solution 
For a black hole with electric charge 𝑄 and intrinsic angular 

momentum 𝑆, the Kerr solutions reads 

𝑑𝑠2 =
.
−
Δ

𝜌2
(𝑑𝑡 − 𝑎 sin2 𝜃 𝑑𝜑)2 +

sin2 𝜃

𝜌2
((𝑟2 + 𝑎2)𝑑𝜑 − 𝑎 𝑑𝑡)

2

+
𝜌2

Δ
𝑑𝑟2 + 𝜌2𝑑𝜃2, 

where 

𝑎 ≔ 𝑆 𝑀,⁄      Δ ≔ 𝑟2 − 2𝑀𝑟 + 𝑎2 + 𝑄2,     𝜌2 ≔ 𝑟2 + 𝑎2 cos2 𝜃 



7 Gravitational Waves 
 

7.1 Magnitude of Gravitational Waves 
Gravitational wave effects are extremely small. An atomic 

transition can emit a photon but also an electron. For the 

emission rate, it is Γph ∼ 𝛼 ∼ 𝑒
2 and Γgr ∼ 𝐺. Since Γgr/Γph is 

dimensionless, a factor of dimension energy squared is missing, 

which turns out to be the energy level difference: 

Γgr

Γph
∼
𝐺(Δ𝐸)2

𝑒2
∼
1

𝛼
(
Δ𝐸

𝐸𝑃
)
2

∼ 10−54  (
Δ𝐸

1 eV
)
2

, 

where 𝐸𝑃 = √ℏ𝑐
5 𝐺⁄  is the Planck energy. The rate for 

gravitation is so low that it will never be measured. However, 

gravitation is attractive only, so macroscopic sources can add up 

to measurable effects. 
 

7.2 Weak Field Approximation and Harmonic Gauge 
FIELD EQUATIONS IN WEAK FIELD APPROXIMATION: 

The Einstein equations are non-linear, so to solve them we will 

adopt a weak field approximation, where 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 ,     |ℎ𝜇𝜈| ≪ 1,     𝜂𝜇𝜈 = diag(−1, 1, 1, 1). 

The affine connection and the Ricci tensor then read 

     Γ   𝜇𝜈
𝜆 =

1

2
𝜂𝜆𝜌(ℎ𝜌𝜈,𝜇 + ℎ𝜌𝜇,𝜈 − ℎ𝜇𝜈,𝜌) + 𝒪(ℎ

2), 

     𝑅𝜇𝜈 = Γ   𝜆𝜇,𝜈
𝜆 − Γ   𝜇𝜈,𝜆

𝜆 + 𝒪(ℎ2) 

             =
1

2
(☐ℎ𝜇𝜈 − ℎ   𝜇,𝜌,𝜈

𝜌
− ℎ   𝜈,𝜇,𝜆

𝜆 + ℎ   𝜌,𝜇,𝜈
𝜌

) + 𝒪(ℎ2), 

where it was used that, in first order of ℎ, indices are raised and 

lowered with 𝜂. Using the Einstein equations in the form of 5.2 

then gives 

2𝑅𝜇𝜈 = ☐ℎ𝜇𝜈 − ℎ   𝜇,𝜌,𝜈
𝜌

− ℎ   𝜈,𝜇,𝜆
𝜆 + ℎ   𝜌,𝜇,𝜈

𝜌
= −16𝜋𝐺𝑁𝑆𝜇𝜈 , 

where 

☐ = 𝜂𝜇𝜈𝜕𝜇𝜕𝜈 ,     𝑆𝜇𝜈 = 𝑇𝜇𝜈 −
1

2
𝜂𝜇𝜈𝑇   𝜆

𝜆 .  

The forces are assumed to be unimportant in the source and the 

ordinary conservation law 𝜕𝜇𝑇   𝜈
𝜇
= 0 holds.  

CHOICE OF COORDINATES/HARMONIC GAUGE: 

Consider a coordinate transformation 

𝑥′𝜇 = 𝑥𝜇 + 𝛼𝜇(𝑥), 

where 𝜀 is similar small as ℎ. Then, the metric transforms like 

𝑔′𝜇𝜈 =
𝜕𝑥′𝜇

𝜕𝑥𝜌
𝜕𝑥′𝜈

𝜕𝑥𝜎
𝑔𝜌𝜎  

⟺     𝜂𝜇𝜈 + ℎ′𝜇𝜈 = (𝛿𝜌
𝜇
+ 𝛼   ,𝜌

𝜇
)(𝛿𝜎

𝜈 + 𝛼   ,𝜎
𝜈 )(𝜂𝜌𝜎 + ℎ𝜌𝜎) 

⟺     ℎ′𝜇𝜈 = ℎ𝜇𝜈 + 𝛼𝜇,𝜈 + 𝛼𝜈,𝜇 

Since the Einstein equations are coordinate independent, ℎ′ also 

solves them, if ℎ solves them. This gauge invariance is removed, 

for instance, by the harmonic gauge fixing condition (see 5.4) 

𝑔𝜇𝜈Γ   𝜇𝜈
𝜆 = 0, 

which by plugging in Γ and 𝑔 from above now reads 

0 = 𝜂𝜇𝜈
1

2
𝜂𝜆𝜌(ℎ𝜈𝜌,𝜇 + ℎ𝜇𝜌,𝜈 − ℎ𝜇𝜈,𝜌) = ℎ      ,𝜇

𝜇𝜆
−
1

2
ℎ   𝜇
𝜇     ,𝜆

⟺     ℎ   𝜈,𝜇
𝜇

=
1

2
ℎ   𝜇,𝜈
𝜇

. 

In this gauge the following terms in the field equations 

−ℎ   𝜇,𝜌,𝜈
𝜌

− ℎ   𝜈,𝜇,𝜆
𝜆 = −

1

2
ℎ   𝜌,𝜇,𝜈
𝜌

−
1

2
ℎ   𝜆,𝜇,𝜈
𝜆 = −ℎ   𝜆,𝜇,𝜈

𝜆  

cancel out a third term and what remains is simply 

☐ℎ𝜇𝜈 = −16𝜋𝐺𝑁𝑆𝜇𝜈 . 

 
 
 
 
 
 

7.3 Solution of the Weak Field Equations 
GENERAL SOLUTION: 

The Green’s function 𝐺± of the ☐-operator, i.e. 

☐𝐺±(𝑥, 𝑥′) = −4𝜋𝛿4(𝑥 − 𝑥′), 

reads 

𝐺±(𝑥, 𝑥′) =
𝛿(𝑡′ − (𝑡 ∓ |𝑥⃗ − 𝑥⃗′|))

|𝑥⃗ − 𝑥⃗′|
. 

Thus, the solution of the last equation in 7.2 reads 

ℎ𝜇𝜈(𝑥⃗, 𝑡) = 4𝐺𝑁∫𝑑𝑥
′ 𝑆𝜇𝜈(𝑥

′)𝐺±(𝑥, 𝑥′)

= 4𝐺𝑁∫𝑑
3𝑥⃗′  

𝑆𝜇𝜈(𝑥⃗
′, 𝑡 ∓ |𝑥⃗ − 𝑥⃗′|)

|𝑥⃗ − 𝑥⃗′|
, 

where only the time-integral was evaluated. The upper sign is 

for the retarded solution (where the mass configuration of the 

past creates the fields now), the lower sign the adcanced 

solution (where the mass configuration of the future creates the 

fields now). Obviously, only the former is implemented in 

nature. 

PLANE WAVE SOLUTION IN VACUUM: 

In vacuum, i.e. 𝑆𝜇𝜈 = 0 ⟹ ☐ℎ𝜇𝜈 = 0, the plane wave ansatz 

ℎ𝜇𝜈(𝑥) = 𝜀𝜇𝜈𝑒
𝑖𝑘𝜎𝑥

𝜎
+ 𝜀𝜇𝜈

∗ 𝑒−𝑖𝑘𝜎𝑥
𝜎

 

with constant polarization 𝜀𝜇𝜈 = 𝜀𝜈𝜇  yields 

☐ℎ𝜇𝜈 = −𝑘𝜌𝑘
𝜌ℎ𝜇𝜈 =

!
0    ⟹      𝑘𝜌𝑘𝜌 = 0. 

Thus, gravitons have to be massless. 

NUMBER OF INDEPENDENT POLARIZATIONS: 

The gauge fixing condition from 7.2 yields 

𝑘𝜇𝜀   𝜈
𝜇
=
1

2
𝑘𝜈𝜀   𝜇

𝜇
. 

Those four equations fix four of the ten independent 

components of 𝜀𝜇𝜈 . Furthermore, there is a so-called residual 

Gauge invariance. Consider the coordinate transformation 

𝑥′𝜇 = 𝑥𝜇 + 𝑖𝛼𝜇𝑒𝑖𝑘𝜈𝑥
𝜈
− 𝑖𝛼∗𝜇𝑒−𝑖𝑘𝜈𝑥

𝜈
=∶ 𝑥𝜇 + 𝜂𝜇 . 

From 7.2 we know, how ℎ𝜇𝜈  transforms, namely 

ℎ𝜇𝜈
′ = ℎ𝜇𝜈 + 𝜂𝜇,𝜈 + 𝜂𝜈,𝜇 = (𝜀𝜇𝜈 + 𝑘𝜇𝛼𝜈 + 𝑘𝜈𝛼𝜇)𝑒

𝑖𝑘𝜈𝑥
𝜈
+ c.c. 

So obviously, the polarization transforms as 

𝜀𝜇𝜈
′ = 𝜀𝜇𝜈 + 𝑘𝜇𝛼𝜈 + 𝑘𝜈𝛼𝜇 . 

Here, we have four free parameters 𝛼𝜇 , which fix again four 

components. Since 𝜀𝜇𝜈
′  still obeys the harmonic gauge condition, 

those four components can be fixed in addition to the four 

already fixed with the normal gauge condition. So we are left 

with 10 − 4 − 4 = 2 independent polarizations. Let’s proof that 

𝜀𝜇𝜈
′  indeed fulfills the harmonic gauge condition: 

𝑘𝜇𝜀    𝜈
′𝜇
=
1

2
𝑘𝜈𝜀    𝜇

′𝜇
. 

Plugging in the formula for 𝜀    𝜈
′𝜇

 and using 𝑘2 = 0 yields 

     ⟺      𝑘𝜇𝜀   𝜈
𝜇
+ 𝑘𝜇𝑘

𝜇𝛼𝜈 + 𝑘𝜇𝑘𝜈𝛼
𝜇 =

1

2
𝑘𝜈(𝜀   𝜇

𝜇
+ 𝑘𝜇𝛼𝜇 + 𝑘𝜇𝛼

𝜇)  

     ⟺      𝑘𝜇𝜀   𝜈
𝜇
+ 𝑘𝜇𝑘𝜈𝛼

𝜇 =
1

2
𝑘𝜈𝜀   𝜇

𝜇
+ 𝑘𝜈𝑘

𝜇𝛼𝜇   

     ⟺      𝑘𝜇𝜀   𝜈
𝜇
=

1

2
𝑘𝜈𝜀   𝜇

𝜇
.  

So, if 𝜀 fulfills the harmonic gauge, so does 𝜀′, too, always. 



8 The Robertson-Walker-Metric 
 

8.1 The Metric in Comoving Coordinates 
THE METRIC: 

The Robertson-Walker-Metric is a metric for a spatially 

homogenous and isotropic universe, i.e. a universe of an 

“smeared-out cosmic fluid”. In comoving coordinates it reads 

−𝑑𝑠2 = 𝑑𝜏2 = 𝑑𝑡2 − 𝑎2 (
𝑑𝑟2

1 − 𝑘𝑟2
+ 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2)), 

where 𝑘 ∈ {0, ±1} and 𝑎 ≡ 𝑎(𝑡) is the cosmic scale factor. Here, 𝑡 

is the cosmic time, related to a scalar quantity, e.g. the 

temperature 𝑇𝛾  of the photons: 𝑡 ≡ 𝑡(𝑇𝛾). The coordinates 𝑟, 𝜃, 𝜑 

are constant got a comoving (freely falling) galaxy.  

CURVATURE: 

The curvature of the spatial subspace (3-space) reads 

𝐾(3)(𝑡) =
𝑘

𝑎2
. 

For 𝑘 = 0, the 3-space is flat, for 𝑘 = ±1 it has constant 

positive/negative curvature. It is finite for 𝑘 = 1, but may be 

infinite for 𝑘 = 0,−1 (it may still by finite, e.g. flat with periodic 

boundary conditions).  
 

8.2 Current and Energy Momentum Tensor 
DEFINITION: 

For comoving galaxies, one can define a 4-current 

𝐽gal
𝜇 (𝑡) = 𝑛gal(𝑡)𝑢

𝜇 ,     𝑢𝜇 = (1, 0, 0, 0), 

where 𝑛gal is the number density of galaxies. The average cosmic 

matter has the energy momentum tensor 

𝑇𝜇𝜈 = (𝜌(𝑡) + 𝑝(𝑡))𝑢𝜇𝑢𝜈 + 𝑔𝜇𝜈
RW𝑝(𝑡). 

For the Minkowski metric, this would read 𝑇𝜇𝜈 = diag(𝜌, 𝑝, 𝑝, 𝑝), 

which hints at the fact, that 𝜌 is something like the energy 

density and 𝑝 the pressure. 

CONSERVATION LAWS: 

From the conservation laws 𝐽   ;𝜇
𝜇
= 𝑇     ;𝜈

𝜇𝜈
= 0 it follows 

𝑛gal𝑎
3 = const.,         

𝑑

𝑑𝑡
(𝜌𝑎3) + 𝑝

𝑑

𝑑𝑡
𝑎3 = 0. 

(For derivation see exercise 12.2) 

The first equation is simply particle number conservation. The 

second equation is analogous to 𝑑𝑄 = 𝑑𝑈 + 𝑑𝑊 from 

thermodynamics with 𝑈 =̂ 𝜌𝑎3 and 𝑑𝑊 = 𝑝 𝑑𝑉 =̂ 𝑝 𝜕𝑡𝑎
3. Thus, 

the second equation means that there is no energy flow out of or 

into the universe.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.3 Hubble-Redshift 
REDSHIFT DUE TO EXPANSION: 

Set the earth (observer) into the origin of the coordinate system 

and consider light being emitted by a comoving galaxy (𝑟, 𝜃, 𝜑 

fixed). For the light travelling radially to earth, it holds 𝑑𝜃 =

𝑑𝜑 = 0 and thus 

𝑑𝜏2 = 0 = 𝑑𝑡2 − 𝑎2
𝑑𝑟2

1 − 𝑘𝑟2
. 

The first wave crest is emitted at 𝑡1 and observed at 𝑡0. 

Integrating the above equation, taking into account that the light 

travels in −𝑟-direction, yields 

𝐼𝑘(𝑟1) ≔ −∫
𝑑𝑟

√1 − 𝑘𝑟2

0

𝑟1

= ∫
𝑑𝑡

𝑎

𝑡0

𝑡1

. 

The next wave crest then is emitted about Δ𝑡1 and received 

about Δ𝑡0 later: 

𝐼𝑘(𝑟1) = ∫
𝑑𝑡

𝑎

𝑡0+Δ𝑡0

𝑡1+Δ𝑡1

. 

Subtracting those two equations yields 

0 = ∫
𝑑𝑡

𝑎

𝑡0+Δ𝑡0

𝑡1+Δ𝑡1

−∫
𝑑𝑡

𝑎

𝑡0

𝑡1

= ∫
𝑑𝑡

𝑎

𝑡0+Δ𝑡0

𝑡0

−∫
𝑑𝑡

𝑎

𝑡1+Δ𝑡1

𝑡1

, 

which can be made visual by the following sketch: 

 
If Δ𝑡𝑖  is so small that 𝑎 doen’t vary much during this time, the 

integral can be evaluated as a product: 

0 ≈
Δ𝑡0
𝑎(𝑡0)

−
Δ𝑡1
𝑎(𝑡1)

    ⟺    
𝜈0
𝜈1
=
Δ𝑡1
Δ𝑡0

≈
𝑎(𝑡1)

𝑎(𝑡0)
, 

where 𝜈𝑖  are the frequencies of the light. Since 𝑡1 < 𝑡0, for an 

expanding universe (i.e. 𝑎(𝑡1) < 𝑎(𝑡0)), we observe redshifts, 

𝜈0 < 𝜈1. 

HUBBLE’S LAW: 

The redshift 𝑧 reads (𝜆 = 𝑐/𝜈) 

𝑧 ≔
𝜆0 − 𝜆1
𝜆1

=
𝜈1
𝜈0
− 1 ≈

𝑎(𝑡0)

𝑎(𝑡1)
− 1. 

For a not too far away galaxy, 𝑎(𝑡1) may be Taylor expanded 

around 𝑡0: 

𝑧 ≈
𝑎(𝑡0)

𝑎(𝑡0) + 𝑎̇(𝑡0)(𝑡1 − 𝑡0)
− 1 =

1

1 +
𝑎̇(𝑡0)
𝑎(𝑡0)

(𝑡1 − 𝑡0)
− 1

≈ 1 −
𝑎̇(𝑡0)

𝑎(𝑡0)
(𝑡1 − 𝑡0) − 1 =

𝑎̇(𝑡0)

𝑎(𝑡0)

𝑟1
𝑐
= 𝐻0

𝑟1
𝑐
. 

Here it was used, that also 𝑡1 − 𝑡0 is small and 𝑡1 − 𝑡0 = −𝑟1/𝑐. 

This is Hubble’s law. 



9 The Expanding Universe 
 

9.1 The Friedmann Equations 
THE REDUCED FIELD EQUATIONS: 

The Robertson-Walker-Metric had components 

𝑔𝑡𝑡 = −1,     𝑔𝑖𝑡 = 0,     𝑔𝑖𝑗 = 𝑎
2𝑔̃𝑖𝑗(𝑥⃗), 

where the 𝑔̃𝑖𝑗  can be read off from 8.1. The Einstein field 

equations from 5.2 read 

𝑅𝜇𝜈 = −8𝜋𝐺𝑁𝑆𝜇𝜈 ,     𝑆𝜇𝜈 ≔ 𝑇𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑇   𝜆

𝜆 . 

Using the Robertson-Walker-Metric, one will find 

𝑅𝑡𝑡 = 3 𝑎̈ 𝑎⁄ ,     𝑅𝑖𝑡 = 0,     𝑅𝑖𝑗 = −(𝑎𝑎̈ + 2𝑎̇
2 + 2𝑘)𝑔̃𝑖𝑗 . 

Taking the energy-momentum tensor from 8.2 yields 

𝑇   𝜆
𝜆 = 𝑔𝜇𝜈𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑔

00 + 𝑝𝛿   𝜇
𝜇
= 3𝑝 − 𝜌, 

where 𝑔00 = −1, 𝛿   𝜇
𝜇
= 4. Thus, 𝑆𝜇𝜈  reads 

𝑆𝑡𝑡 =
1

2
(𝜌 + 3𝑝),     𝑆𝑖𝑡 = 0,     𝑆𝑖𝑗 =

1

2
𝑎2𝑔̃𝑖𝑗(𝜌 − 𝑝). 

Thus, the reduced (by the Ansatz) field equations read 

3𝑎̈ = −4𝜋𝐺(𝜌 + 3𝑝)𝑎,          𝑎𝑎̈ + 2𝑎̇2 + 2𝑘 = 4𝜋𝐺(𝜌 − 𝑝)𝑎2. 

THE FRIEDMANN EQUATIONS: 

Multiplying the first of the above equations with 𝑎 and subtract 

three times the second equation gives the first Friedmann 

equation: 

𝐹𝐼     ∶⟺      𝑎̇2 + 𝑘 =
8𝜋𝐺

3
𝜌𝑎2. 

For the second Friedmann, recall 𝜕𝑡𝜌𝑎
3 + 𝑝𝜕𝑡𝑎

3 = 0 from 8.2. 

Multiplying this by 𝑑𝑡/𝑑𝑎 yields 

𝐹𝐼𝐼     ∶⟺      
𝑑

𝑑𝑎
𝜌𝑎3 = −3𝑝𝑎2. 

We have three unknowns 𝑎, 𝑝, 𝜌; thus, we need a third equation, 

e.g. the equation of state: 

𝐹𝐼𝐼𝐼    ∶⟺      𝑝 = 𝑝(𝜌) = {
0,    non-relativistic matter  
𝜌 3⁄ , ultra-relativistic matter

. 

 

9.2 Qualitative Insights from the Friedmann Equations 
RADIANT WAS DOMINANT IN EARLY UNIVERSE: 

The Friedmann equation 𝐹𝐼𝐼 gives for non- and ultra-relativistic 

matter 

𝐹𝐼𝐼     ⟹      {
non-rel.:  𝜕𝑎𝜌𝑎

3 = 0 ⟹ 𝜌 ∼ 𝑎−3

ultra-rel.: 𝜕𝑎𝜌𝑎
3 = −𝜌𝑎2 ⟹ 𝜌 ∼ 𝑎−4

. 

Hence, if at present time we have 0 < 𝜌u-rel. ≪ 𝜌n-rel. then, since 𝑎 

is increasing, there must have been a time, where 𝜌u-rel. > 𝜌n-rel., 

i.e. radiation was dominant in the early universe, i.e. we had a 

hot big bang. 

THERE WAS A BIG BANG, I.E. 𝒂 = 𝟎: 

Recall the first reduced field equation from 9.1. From 𝑎 ≥ 0 and 

𝜌 + 3𝑝 ≥ 0 (which holds for all known matter), we have 𝑎̈ ≤ 0. 

Thus, 𝑎(𝑡) is concave and since the present (𝑡 = 𝑡0) expansion 

rate is positive, 

𝐻0 ≔
𝑎̇

𝑎
|
𝑡0

> 0, 

there must have been a big bang and 

some time 𝑡𝐵𝐵 , where 𝑎(𝑡𝐵𝐵) = 0. 

AGE OF THE UNIVERSE: 

Since 𝑎(𝑡) is concave, an upper limit 

𝑡ul can be set on the age of the universe, namely 

𝑡ul = 𝐻0
−1 ≈ 13 ⋅ 109 yr. 

CRITICAL DENSITY: 

At present time, 𝐹𝐼 is equivalent to 

𝜌0 =
3

8𝜋𝐺
(𝐻0

2 +
𝑘

𝑎0
2) =∶ 𝜌0𝑐 +

3𝑘

8𝜋𝐺𝑎0
2 ,     𝜌0𝑐 =

3𝐻0
2

8𝜋𝐺
. 

Obviously, 𝜌0 ⋚ 𝜌0𝑐 ⟹ 𝑘 ⋚ 0. We have measured that 

Ω ≔ 𝜌0 𝜌0𝑐⁄      ⟹      0,1 ≤ Ω𝑚 ≤ 0,2. 

Ω𝑚  takes all matter (incl. dark matter) density into account. 
 

9.3 More Detailed Behavior of the Scale Factor 
MATTER DOMINATED UNIVERSE: 

Let’s assume, 𝑘 = 0. In the matter dominated universe (𝑝 = 0), 

from 9.2 or 𝐹𝐼𝐼 in 9.1 it is known that 𝜌 ∼ 𝑎−3. Hence, 

𝐹𝐼     ⟹      𝑎̇2 ∼ 𝜌𝑎2 ∼ 𝑎−1     ⟹      𝑎 ∼ 𝑡2 3⁄ . 

For 𝑘 ≠ 0, solutions can also be found: 

The solution for 𝑘 > 0 is qualitatively  

different from the others; here there is 

a big crunch. 

So, choosing 𝑡𝐵𝐵 = 0, we may write 

          𝑎(𝑡) = 𝑎0(𝑡 𝑡0⁄ )2 3⁄  

and hence 𝑎(𝑡𝐵𝐵) = 0 as well as 

𝐻 =
𝑎̇

𝑎
=
2

3𝑡
    ⟹      𝑡0 =

2

3𝐻0
≈ 8,7 ⋅ 109 yr. 

Thus, from the behavior 𝑎 ∼ 𝑡2 3⁄ , the age of the universe is 2/3 

of its maximum possible value from 9.2. The problem is: This is 

younger that observed stars. 

RADIATION DOMINATED UNIVERSE: 

For early time, we can neglect the 𝑘-term in 𝐹𝐼 as will be justified 

a posteriori. From 𝐹𝐼𝐼 we had in 9.2 already 𝜌 ∼ 𝑎−4, hence 

𝐹𝐼     ⟹      𝑎̇2 =
8𝜋𝐺

3
𝜌𝑎2 ∼ 𝑎−2     ⟹      𝑎 ∼ 𝑡1 2⁄ . 

By the Stefan-Boltzmann law 𝜌 ∼ 𝑇4, we have 𝑇 ∼ 𝑎−1. It follows 

that 𝑎̇2 ∼ 𝑡−1 and 𝜌𝑎2 ∼ 𝑎−2 ∼ 𝑡−1, whereas 𝑘 ∼ 𝑡0. Thus, for 

early times, the 𝑘-term could be neglected. 
 

9.4 Accelerating Universe: Vacuum Energy 
THE COSMOLOGICAL CONSTANT: 

In 1917 Einstein proposed a generalization for his field 

equations (see 5.1) to make a static universe possible by 

introducing a constant 𝜆 : 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 = −8𝜋𝐺(𝑇𝜇𝜈 − 𝜆𝑔𝜇𝜈) =∶ −8𝜋𝐺𝑇̃𝜇𝜈 . 

For a perfect fluid, like in 8.2, the energy-momentum tensor 

takes the form 

𝑇̃𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 + 𝑔𝜇𝜈𝑝 − 𝜆𝑔𝜇𝜈 =∶ (𝜌̃ + 𝑝)𝑢𝜇𝑢𝜈 + 𝑔𝜇𝜈𝑝, 

which defines 

𝜌̃ ≔ 𝜌 + 𝜆,          𝑝 = 𝑝 − 𝜆. 

For 𝜆 > 0, the “vacuum energy density” increases the energy 

density but reduces the pressure. By replacing 𝜌 → 𝜌̃ and 𝑝 → 𝑝 

all the previous results remain valid. The first Friedmann 

equation becomes 

𝐹̃𝐼     ∶⟺      𝑎̇2 + 𝑘 =
8𝜋𝐺

3
𝜌̃𝑎2 =

8𝜋𝐺

3
𝜌𝑎2 +

Λ

3
𝑎2 

with the cosmological constant 

Λ = 8𝜋𝐺𝜆. 

THE STATIC EINSTEIN-UNIVERSE: 

For a static universe (𝑎̇ = 0) the Friedmann equations read 

𝐹̃𝐼:     𝑘 =
8𝜋𝐺

3
𝜌𝑎2 +

Λ

3
𝑎2, 

From 𝜌̃ = −3𝑝 (don’t know where this comes from) follows 𝜌 =

2𝜆. Plugging this into 𝐹̃𝐼 yields 

𝑎 = √𝑘 Λ⁄      and of course     𝜌 =
Λ

4𝜋𝐺
. 
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